Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_2_a6, author = {S. N. Selezneva}, title = {Deciding multiaffinity of polynomials over a finite field}, journal = {Diskretnaya Matematika}, pages = {109--124}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_2_a6/} }
S. N. Selezneva. Deciding multiaffinity of polynomials over a finite field. Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 109-124. http://geodesic.mathdoc.fr/item/DM_2023_35_2_a6/
[1] Gorshkov S. P., “O slozhnosti raspoznavaniya multiaffinnosti, biyunktivnosti, slaboi polozhitelnosti i slaboi otritsatelnosti”, Obozr. promyshl. prikl. matem., 4:2 (1997), 216–237
[2] Selezneva S. N., “O multiaffinnykh mnogochlenakh nad konechnym polem”, Diskretnaya matematika, 32:3 (2020), 85–97 | DOI
[3] Selezneva S. N., O proverke multiaffinnosti funktsii algebry logiki po ikh mnogochlenam Zhegalkina, 2022, no. 1, 42–49 | MR | Zbl
[4] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 430 pp.
[5] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2001, 384 pp.
[6] Yablonskii S. V., Gavrilov G. P., Nabebin A. A., Predpolnye klassy v mnogoznachnykh logikakh, Izd-vo MEI, M., 1997, 144 pp. | MR
[7] Tyrtyshnikov E. E., Osnovy algebry, Fizmatlit, M., 2017, 464 pp.
[8] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp.