Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_2_a3, author = {A. V. Menyachikhin}, title = {Adapted spectral-differential method for constructing differentially 4-uniform piecewise-linear substitutions, orthomorphisms, involutions over the field $\mathbb{F}_{2^{n}}$}, journal = {Diskretnaya Matematika}, pages = {42--77}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_2_a3/} }
TY - JOUR AU - A. V. Menyachikhin TI - Adapted spectral-differential method for constructing differentially 4-uniform piecewise-linear substitutions, orthomorphisms, involutions over the field $\mathbb{F}_{2^{n}}$ JO - Diskretnaya Matematika PY - 2023 SP - 42 EP - 77 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2023_35_2_a3/ LA - ru ID - DM_2023_35_2_a3 ER -
%0 Journal Article %A A. V. Menyachikhin %T Adapted spectral-differential method for constructing differentially 4-uniform piecewise-linear substitutions, orthomorphisms, involutions over the field $\mathbb{F}_{2^{n}}$ %J Diskretnaya Matematika %D 2023 %P 42-77 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2023_35_2_a3/ %G ru %F DM_2023_35_2_a3
A. V. Menyachikhin. Adapted spectral-differential method for constructing differentially 4-uniform piecewise-linear substitutions, orthomorphisms, involutions over the field $\mathbb{F}_{2^{n}}$. Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 42-77. http://geodesic.mathdoc.fr/item/DM_2023_35_2_a3/
[1] Bugrov A.D., “Kusochno-affinnye podstanovki konechnykh polei”, Prikladnaya diskretnaya matematika, 4:30 (2015), 5–23
[2] Davydov S.A., Kruglov I.A., “Metod sinteza differentsialno 4-ravnomernykh podstanovok prostranstva $V_{m}$ dlya chetnykh $m$”, Diskretnaya matematika, 31:2 (2019), 69–76 | DOI
[3] Kormen T., Leizerson Ch., Rivest R., Shtain K., Algoritmy: postroenie i analiz, Per. s angl., 3-e izd., OOO «I.D. Vilyams», M., 2013, 1328 pp.
[4] Pogorelov B.A., Pudovkina M.A., “Klassy kusochno-kvaziaffinnykh preobrazovanii na obobschennoi 2-gruppe kvaternionov”, Diskretnaya matematika, 34:1 (2022), 103–125 | DOI
[5] Pogorelov B.A., Pudovkina M.A., “Klassy kusochno-kvaziaffinnykh podstanovok na diedralnoi, poludiedralnoi i modulyarnoi maksimalno-tsiklicheskoi 2-gruppakh”, Diskretnaya matematika, 34:2 (2022), 50–66 | DOI
[6] Sachkov V.N., “Kombinatornye svoistva differentsialno 2-ravnomernykh podstanovok”, Matem. voprosy kriptografii, 6:1 (2015), 159–179 | DOI | MR | Zbl
[7] Trishin A.E., “O pokazatele nelineinosti kusochno-lineinykh podstanovok additivnoi gruppy polya ${\rm {\mathbb F}}_{2^{n} } $”, Prikl. diskr. matem., 4:30 (2015), 32–42
[8] Shennon K., Raboty po teorii informatsii i kibernetike, IL, M., 1963, 829 pp.
[9] Bell J., “Cyclotomic orthomorphisms of finite fields”, Discrete Applied Mathematics, 161 (2013), 294–300 | DOI | MR | Zbl
[10] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, CRYPTO 1990, Lect. Notes Comput. Sci., 537, 1991, 2–21 | DOI | MR | Zbl
[11] Bogdanov A., Knudsen L.R., Leander G., Paar C., Poschmann A., Robshaw M.J.B., Seurin Y., Vikkelsoe C, “PRESENT: An ultra-lightweight block cipher”, CHES 2007, Lect. Notes Comput. Sci., 4727, 2007, 450–466 | DOI | Zbl
[12] Bracken C., Leander G., “A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree”, Finite Fields Appl., 16:4 (2010), 231–242 | DOI | MR | Zbl
[13] Bracken C., Tan C., Tan Y., “Binomial differentially 4 uniform permutations with high nonlinearity”, Finite Fields Appl., 18:3 (2012), 537–546 | DOI | MR | Zbl
[14] Brison O.J., “On group-permutation polynomials”, Portug. Math., 50 (1993), 365–383 | MR | Zbl
[15] Burov D.A., Pogorelov B.A., “An attack on 6 rounds of Khazad”, Matem. voprosy kriptografii, 7:2 (2016), 35–46 | DOI | MR | Zbl
[16] Canteaut A., Duval S., Perrin L., “A generalisation of Dillon's APN permutation with the best known differential and nonlinear properties for all fields of size $24k+2$”, IEEE Trans. Inf. Theory, 63:11 (2017), 7575–7591 | DOI | MR | Zbl
[17] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, 2020, 574 pp.
[18] Carlet C., “On known and new differentially uniform functions”, ACISP 2011, Lect. Notes Comput. Sci., 6812, 2011, 1–15 | DOI | Zbl
[19] Carlet C., “Open questions on nonlinearity and on APN functions”, Proceedings of Arithmetic of Finite Fields 5th International Workshop, WAIFI 2014, Lect. Notes Comput. Sci., 9061, 2015, 83–107 | DOI | MR | Zbl
[20] Carlet C., Tang D., Tang X., Liao Q., “New construction of differentially 4-uniform bijections”, INSCRYPT 2013, Lect. Notes Comput. Sci., 8567, 2014, 22–38 | DOI | MR | Zbl
[21] Chen X., Deng Y., Zhu M., Qu L., “An equivalent condition on the switching construction of differentially 4-uniform permutations on $\mathbb{F}_{2^{2k}}$ from the inverse function”, Int. J. Computer Math., 94:6 (2017), 1252–1267 | DOI | MR | Zbl
[22] Dobbertin H., “One-to-one highly nonlinear power functions on $GF(2n)$”, Appl. Algebra in Eng., Commun. Computing, 9:2 (1998), 139–152 | DOI | MR | Zbl
[23] De La Cruz Jimenez R.A., “Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms with almost optimal cryptographic parameters”, Matem. voprosy kriptografii, 12:3 (2021), 89–124 | DOI | MR | Zbl
[24] Evans A., Orthomorphisms Graphs of Groups, Springer-Verlag, Berlin, 1992, 114 pp. | MR
[25] Fear D., Wanless I. M., “Existence results for cyclotomic orthomorphisms”, J. Algebr. Comb., 46 (2017), 1–14 | DOI | MR | Zbl
[26] Fomin D.B., “New classes of 8-bit permutations based on butterfly structure”, Matem. voprosy kriptografii, 10:2 (2019), 169–180 | DOI | MR | Zbl
[27] Fu S., Feng X., “Involutory differentially 4-uniform permutations from known constructions”, Des., Codes Cryptogr., 87:1 (2018), 31–56 | MR
[28] Gold R., “Maximal recursive sequences with 3-valued recursive crosscorrelation functions”, IEEE Trans. Inf. Theory, 14 (1968), 154–156 | DOI | Zbl
[29] Kasami T., “The weight enumerators for several classes of subcodes of the second order binary Reed–Muller codes”, Inf. and Control, 18 (1971), 369–394 | DOI | MR | Zbl
[30] Leander G., Abdelraheem M.A., Alkhzaimi H., Zenner E., “A cryptanalysis of PRINT cipher: The invariant subspace attack”, EUROCRYPT 2011, Lect. Notes Comput. Sci., 6841, 2011, 206–221 | DOI | MR | Zbl
[31] Li L., Wang M., “Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^{m}}$ from quadratic APN permutations over $\mathbb{F}_{2^{m+1}}$”, Des., Codes Cryptogr., 72:2 (2014), 249–264 | DOI | MR | Zbl
[32] Malyshev F.M., Trishin A.E., “Linear and differential cryptanalysis: Another viewpoint”, Matem. voprosy kriptografii, 11:2 (2020), 83–98 | DOI | MR | Zbl
[33] Matsui M., “Linear cryptanalysis method for DES cipher”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 386–397 | DOI | Zbl
[34] Matsumoto M., Nishimura T., “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random generator”, ACM Trans. Model. Computer Simul., 8 (1998), 8–30 | Zbl
[35] McKay B.D., McLeod J.C., Wanless I.M., “The number of transversals in a Latin square”, Des., Codes Cryptogr., 40:3 (2006), 269–284 | DOI | MR | Zbl
[36] Menyachikhin A.V., “Spectral-linear and spectral-differential methods for generating s-boxes having almost optimal cryptographic parameters”, Matem. voprosy kriptografii, 8:2 (2017), 97–116 | DOI | MR | Zbl
[37] Menyachikhin A.V., “The change in linear and differential characteristics of substitution after the multiplication by transposition”, Matem. voprosy kriptografii, 11:2 (2020), 111–123 | DOI | MR | Zbl
[38] Niederreiter H., Winterhof A., “Cyclotomic R-orthomorphisms of finite fields”, Discrete Mathematics, 295 (2005), 161–171 | DOI | MR | Zbl
[39] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64 | DOI | MR | Zbl
[40] Park Y. H., Lee J. B., “Permutation polynomials and group permutation polynomials”, Bull. Australian Math. Soc., 63:1 (2001), 67–74 | DOI | MR | Zbl
[41] Peng J., Tan C. H., “New explicit constructions of differentially 4-uniform permutations via special partitions of $\mathbb{F}_{2^{2k}}$”, Finite Fields Appl., 40 (2016), 73–89 | DOI | MR | Zbl
[42] Perrin L., Udovenko A., Biryukov A., “Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem”, CRYPTO 2016, Lect. Notes Comput. Sci., 9815, no. 2, 2016, 93–122 | DOI | MR | Zbl
[43] Shimanski N.L., Orthomorphisms of Boolean Groups. PhD thesis, Portland State Univ., 2016, 91 pp. | MR
[44] Qu L., Tan Y., Li C., Gong G., “More constructions of differentially 4-uniform permutations on $\mathbb{F}_{2^{k}}$”, Des., Codes Cryptogr., 78:2 (2016), 391–408 | MR | Zbl
[45] Qu L., Tan Y., Tan C. H., Li C., “Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^{2k}}$ via the switching method”, IEEE Trans. Inf.Theory, 59:7 (2013), 4675–4686 | DOI | MR | Zbl
[46] Tang D., Carlet C., Tang X., “Differentially 4-uniform bijections by permuting the inverse function”, Des., Codes Cryptogr., 77:1 (2015), 117–141 | DOI | MR | Zbl
[47] Wan D., Lidl R., “Permutation polynomials of the form $x^{r}f(x^{q-1}/d)$ and their group structure”, Monatsh. Math., 112 (1991), 149–163 | DOI | MR | Zbl
[48] Wang Q., “Cyclotomic mapping permutation polynomials over finite fields”, SSC 2007, Lect. Notes Comput. Sci., 4893, no. 1, 2007, 119–128 | DOI | MR | Zbl
[49] Wanless I., “Transversals in Latin squares”, Quasigr. Relat. Syst., 15:1 (2007), 169–190 | MR | Zbl
[50] Wells C., “Groups of permutation polynomials”, Monatsh. Math., 71 (1967), 248–262 | DOI | MR | Zbl
[51] Yu Y., Wang M., Li Y., “Constructing low differential uniformity functions from known ones”, Chinese J. Electronics, 22:3 (2013), 495–499
[52] Zha Z., Hu L., Sun S., “Constructing new differentially 4-uniform permutations from the inverse function”, Finite Fields Appl., 25 (2014), 64–78 | DOI | MR | Zbl