On implicit extensions in many-valued logic
Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Kuznetsov's implicit expressibility and its generalizations, when the implicit expressibility language is augmented with the additional disjunction, implication, and negation logical connectives. It is shown that, for each $k\geqslant 3$, the implicit extensions in $P_k$ have the cardinality of the continuum. For each $k\geqslant 3$, we also prove that each of the sets of positively implicit, implicatively implicit, and negatively implicit extensions in $P_k$ contains, respectively, as a proper subset, the set of positively implicit, implicatively implicit, and negatively implicit closed classes. We verify that, for $k\geqslant 2$, the functions of the set $H_k^*$ of homogeneous functions preserving the set $E_{k-1}$ can be used for producing implicatively implicit and negatively implicit extensions without changing the result.
Keywords: implicit extension, many-valued logic.
@article{DM_2023_35_2_a2,
     author = {S. S. Marchenkov},
     title = {On implicit extensions in many-valued logic},
     journal = {Diskretnaya Matematika},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On implicit extensions in many-valued logic
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 34
EP  - 41
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/
LA  - ru
ID  - DM_2023_35_2_a2
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On implicit extensions in many-valued logic
%J Diskretnaya Matematika
%D 2023
%P 34-41
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/
%G ru
%F DM_2023_35_2_a2
S. S. Marchenkov. On implicit extensions in many-valued logic. Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 34-41. http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/

[1] Danilchenko A. F., “O parametricheskoi vyrazimosti funktsii trekhznachnoi logiki”, Algebra i logika, 16:4 (1977), 397–416 | MR | Zbl

[2] Danilchenko A. F., “Parametricheski zamknutye klassy funktsii trekhznachnoi logiki”, Izvestiya AN MSSR, 2 (1978), 13–20 | Zbl

[3] Kasim-Zade O. M., “O neyavnoi vyrazimosti bulevykh funktsii”, Vestnik MGU. Ser. 1: Matem., mekhanika, 2 (1995), 44–49 | MR | Zbl

[4] Kasim-Zade O. M., “O neyavnoi vyrazimosti v dvuznachnoi logike i kriptoizomorfizmakh dvukhelementnykh algebr”, Doklady RAN, 348:3 (1996), 299–301 | MR | Zbl

[5] Kasim-Zade O. M., “O neyavnykh formakh vyrazimosti v mnogoznachnykh logikakh”, Mater. Vseross. konf. «Diskretnyi analiz i issledovanie operatsii» (Novosibirsk, iyun 2004 g.), Izd-vo IM SO RAN, Novosibirsk, 2004, 32–35

[6] Kasim-Zade O. M., “O neyavnoi polnote v $k$-znachnoi logike”, Vestnik MGU. Ser. 1. Matem., mekhanika, 3 (2007), 9–13 | Zbl

[7] Kuznetsov A. V., “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, Nauka, M., 1979, 5–33

[8] Marchenkov S. S., “Odnorodnye algebry”, Problemy kibernetiki, 39, Nauka, M., 1982, 85–106 | MR

[9] Marchenkov S. S., “O vyrazimosti funktsii mnogoznachnoi logiki v nekotorykh logiko-funktsionalnykh yazykakh”, Diskretnaya matematika, 11:4 (1999), 110–126 | DOI | Zbl

[10] Marchenkov S. S., Operatory zamykaniya logiko-funktsionalnogo tipa, MAKS Press, M., 2012, 99 pp.

[11] Marchenkov S. S., Silnye operatory zamykaniya, Fizmatlit, M., 2017, 94 pp.

[12] Marchenkov S. S., “Neyavnaya vyrazimost v mnogoznachnoi logike”, Vestnik MGU. Ser. 15: Vychisl. matem. i kibern., 3 (2022), 41–48

[13] Orekhova E. A., “Ob odnom kriterii neyavnoi polnoty v $k$-znachnoi logike”, Matem. voprosy kibernetiki, 11 (2002), 77–90, Fizmatlit, M. | MR

[14] Orekhova E. A., “O kriterii neyavnoi shefferovosti v trekhznachnoi logike”, Diskret. analiz i issled. operatsii. Ser. 1, 10:3 (2003), 82–105 | MR | Zbl

[15] Orekhova E. A., “Ob odnom kriterii neyavnoi polnoty v trekhznachnoi logike”, Matematicheskie voprosy kibernetiki, 12 (2003), 27–74, Fizmatlit, M.

[16] Starostin M. V., “Neyavno predpolnye klassy i kriterii polnoty v trekhznachnoi logike”, Vestnik MGU. Ser. 1. Matem., mekhanika, 2 (2018), 182–184

[17] Starostin M. V., “O nekotorykh neyavno predpolnykh klassakh funktsii, sokhranyayuschikh podmnozhestva”, Vestnik MGU. Ser. 1. Matem., mekhanika, 6 (2018), 36–40 | Zbl

[18] Starostin M. V., “O nekotorykh neyavno predpolnykh klassakh monotonnykh funktsii v $P_k$”, Diskretnaya matematika, 30:4 (2018), 106–114 | DOI

[19] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh bazisa”, DAN SSSR, 127:1 (1959), 44–46 | Zbl

[20] Burris S., Willard R., “Finitely many primitive positive clones”, Proc. Amer. Math. Soc., 101:3 (1987), 427–430 | DOI | MR | Zbl

[21] Danil'čenko A. F., “On parametrical expressibility of the functions of $k$-valued logic”, Colloq. Math. Soc. J. Bolyai, 28 (1981), 147–159 | MR | Zbl