On implicit extensions in many-valued logic
Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 34-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Kuznetsov's implicit expressibility and its generalizations, when the implicit expressibility language is augmented with the additional disjunction, implication, and negation logical connectives. It is shown that, for each $k\geqslant 3$, the implicit extensions in $P_k$ have the cardinality of the continuum. For each $k\geqslant 3$, we also prove that each of the sets of positively implicit, implicatively implicit, and negatively implicit extensions in $P_k$ contains, respectively, as a proper subset, the set of positively implicit, implicatively implicit, and negatively implicit closed classes. We verify that, for $k\geqslant 2$, the functions of the set $H_k^*$ of homogeneous functions preserving the set $E_{k-1}$ can be used for producing implicatively implicit and negatively implicit extensions without changing the result.
Keywords: implicit extension, many-valued logic.
@article{DM_2023_35_2_a2,
     author = {S. S. Marchenkov},
     title = {On implicit extensions in many-valued logic},
     journal = {Diskretnaya Matematika},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On implicit extensions in many-valued logic
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 34
EP  - 41
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/
LA  - ru
ID  - DM_2023_35_2_a2
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On implicit extensions in many-valued logic
%J Diskretnaya Matematika
%D 2023
%P 34-41
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/
%G ru
%F DM_2023_35_2_a2
S. S. Marchenkov. On implicit extensions in many-valued logic. Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 34-41. http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/