On implicit extensions in many-valued logic
Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 34-41
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Kuznetsov's implicit expressibility and its generalizations, when the implicit expressibility language is augmented with the additional disjunction, implication, and negation logical connectives. It is shown that, for each $k\geqslant 3$, the implicit extensions in $P_k$ have the cardinality of the continuum. For each $k\geqslant 3$, we also prove that each of the sets of positively implicit, implicatively implicit, and negatively implicit extensions in $P_k$ contains, respectively, as a proper subset, the set of positively implicit, implicatively implicit, and negatively implicit closed classes. We verify that, for $k\geqslant 2$, the functions of the set $H_k^*$ of homogeneous functions preserving the set $E_{k-1}$ can be used for producing implicatively implicit and negatively implicit extensions without changing the result.
Keywords:
implicit extension, many-valued logic.
@article{DM_2023_35_2_a2,
author = {S. S. Marchenkov},
title = {On implicit extensions in many-valued logic},
journal = {Diskretnaya Matematika},
pages = {34--41},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/}
}
S. S. Marchenkov. On implicit extensions in many-valued logic. Diskretnaya Matematika, Tome 35 (2023) no. 2, pp. 34-41. http://geodesic.mathdoc.fr/item/DM_2023_35_2_a2/