Mutually Orthogonal Latin Squares as Group Transversals
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a method to determine a complete set of mutually orthogonal Latin squares of order $m$, where $m$ is an odd prime or power of a prime, as a group transversal of a Frobenius group.
Keywords: Latin Square, Mutually Orthogonal Latin Square, Frobenius group, Transversals.
@article{DM_2023_35_1_a5,
     author = {R. Pradhan and V. K. Jain},
     title = {Mutually {Orthogonal} {Latin} {Squares} as {Group} {Transversals}},
     journal = {Diskretnaya Matematika},
     pages = {82--87},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/}
}
TY  - JOUR
AU  - R. Pradhan
AU  - V. K. Jain
TI  - Mutually Orthogonal Latin Squares as Group Transversals
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 82
EP  - 87
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/
LA  - ru
ID  - DM_2023_35_1_a5
ER  - 
%0 Journal Article
%A R. Pradhan
%A V. K. Jain
%T Mutually Orthogonal Latin Squares as Group Transversals
%J Diskretnaya Matematika
%D 2023
%P 82-87
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/
%G ru
%F DM_2023_35_1_a5
R. Pradhan; V. K. Jain. Mutually Orthogonal Latin Squares as Group Transversals. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 82-87. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/

[1] Bedford D., “Construction of orthogonal Latin squares using left neofields”, Discrete Math., 115:1–3 (1993), 17–38 | DOI | MR

[2] Johnson D. M., Dulmage A. L., Mendelsohn N. S., “Orthomorphisms of groups and orthogonal Latin squares. I”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR

[3] Parker E. T., “Construction of some sets of mutually orthogonal Latin squares”, Proc. Amer. Math. Soc., 10:6 (1959), 946–949 | DOI | MR

[4] Mann H. B., “The construction of orthogonal Latin squares”, Ann. Math. Statist., 13:4 (1942), 418–423 | DOI | MR

[5] Grove L. C., Groups and Characters, Wiley, New York, 1997, 212 pp. | MR

[6] Euler L., “Recherches sur un nouvelle espéce de quarrés magiques”, Verhandelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen, 9 (1782), 85–239

[7] Mariot L., Gadouleau M., Formenti E., Leporati A., “Mutually orthogonal Latin squares based on cellular automata”, Designs Codes Cryptogr., 88:2 (2020), 391–411 | DOI | MR

[8] Julian R., Abel R., Bennett F. E., “The existence of 2-SOLSSOMs”, Designs 2002, Mathematics and its Applications, 563, 2003, 1–21 | MR

[9] Bose R. C., “On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares”, Sankhyā: Indian J. Statist., 3:4 (1938), 323–338

[10] Bose R. C., Shrikhande S. S., “On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler”, Trans. Amer. Math. Soc., 95:2 (1960), 191–209 | DOI | MR

[11] Faruki Sh., Katre S. A., Garg M., “Psevdoortogonalnye latinskie kvadraty”, Diskretnaya matematika, 33:3 (2020), 113–129 | MR