Mutually Orthogonal Latin Squares as Group Transversals
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 82-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a method to determine a complete set of mutually orthogonal Latin squares of order $m$, where $m$ is an odd prime or power of a prime, as a group transversal of a Frobenius group.
Keywords: Latin Square, Mutually Orthogonal Latin Square, Frobenius group, Transversals.
@article{DM_2023_35_1_a5,
     author = {R. Pradhan and V. K. Jain},
     title = {Mutually {Orthogonal} {Latin} {Squares} as {Group} {Transversals}},
     journal = {Diskretnaya Matematika},
     pages = {82--87},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/}
}
TY  - JOUR
AU  - R. Pradhan
AU  - V. K. Jain
TI  - Mutually Orthogonal Latin Squares as Group Transversals
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 82
EP  - 87
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/
LA  - ru
ID  - DM_2023_35_1_a5
ER  - 
%0 Journal Article
%A R. Pradhan
%A V. K. Jain
%T Mutually Orthogonal Latin Squares as Group Transversals
%J Diskretnaya Matematika
%D 2023
%P 82-87
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/
%G ru
%F DM_2023_35_1_a5
R. Pradhan; V. K. Jain. Mutually Orthogonal Latin Squares as Group Transversals. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 82-87. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a5/