Relations between energy complexity measures of Boolean networks and positive sensitivity of Boolean functions
Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 71-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We study relationships between lower estimates for the energy complexity $E(\Sigma)$, the switching complexity $S(\Sigma)$ of a normalized Boolean network $\Sigma$, and the positive sensitivity $\operatorname{ps}(f)$ of the Boolean function $f$ implemented by this circuit. The lower estimate $E(\Sigma)\geqslant \lfloor\frac{\operatorname{ps}(f)-1}{m}\rfloor$ is proved for a sufficiently wide class of bases consisting of monotone Boolean functions of at most $m$ variables, the negation gate, and the Boolean constants $0$ and $1$. For the switching complexity of circuits, we construct a counterexample which shows that, for the standard basis of elements of the disjunction, conjunction, and negation, there do not exist a linear (with respect to $\operatorname{ps}(f)$) lower estimate for the switching complexity.
Keywords:
Boolean network, energy complexity, switching complexity, positive sensitivity.
@article{DM_2023_35_1_a4,
author = {M. A. Mestetskiy and M. S. Shupletsov},
title = {Relations between energy complexity measures of {Boolean} networks and positive sensitivity of {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {71--81},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_1_a4/}
}
TY - JOUR AU - M. A. Mestetskiy AU - M. S. Shupletsov TI - Relations between energy complexity measures of Boolean networks and positive sensitivity of Boolean functions JO - Diskretnaya Matematika PY - 2023 SP - 71 EP - 81 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2023_35_1_a4/ LA - ru ID - DM_2023_35_1_a4 ER -
%0 Journal Article %A M. A. Mestetskiy %A M. S. Shupletsov %T Relations between energy complexity measures of Boolean networks and positive sensitivity of Boolean functions %J Diskretnaya Matematika %D 2023 %P 71-81 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2023_35_1_a4/ %G ru %F DM_2023_35_1_a4
M. A. Mestetskiy; M. S. Shupletsov. Relations between energy complexity measures of Boolean networks and positive sensitivity of Boolean functions. Diskretnaya Matematika, Tome 35 (2023) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/DM_2023_35_1_a4/