Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_4_a8, author = {S. K. Sharma and H. Raza and V. K. Bhat}, title = {Fault-tolerant resolvability of some graphs of convex polytopes}, journal = {Diskretnaya Matematika}, pages = {108--122}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a8/} }
S. K. Sharma; H. Raza; V. K. Bhat. Fault-tolerant resolvability of some graphs of convex polytopes. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 108-122. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a8/
[1] Bǎca M., “Labellings of two classes of convex polytopes”, Util. Math., 34 (1988), 24–31 | MR | Zbl
[2] Basak M., Saha L., Das G. K., Tiwary K., “Fault-tolerant metric dimension of circulant graphs $C_{n}(1, 2, 3)$”, Theor. Comput. Sci., 817 (2020), 66–79 | DOI | MR | Zbl
[3] Bashir H., Zahid Z., Kashif A., Zafar S., Liu J. B., “On 2-metric resolvability in rotationally-symmetric graphs”, J. Intell. Fuzzy Syst., 2021, 1–9
[4] Beerloiva Z., Eberhard F., Erlebach T., Hall A., Hoffmann M., Mihalák M., Ram L., “Network discovery and verification”, IEEE J. Sel. Area Commun., 24 (2006), 2168–2181 | DOI | MR
[5] Chartrand G., Eroh L., Johnson M. A., Oellermann O. R., “Resolvability in graphs and the metric dimension of a graph”, Discrete Appl. Math., 105 (2000), 99–113 | DOI | MR | Zbl
[6] Chartrand G., Saenpholphat V., Zhang R., “The independent resolving number of a graph”, Math. Bohem., 128 (2003), 379–393 | DOI | MR | Zbl
[7] Chartrand G., Zhang R., “The theory and applications of resolvability in graphs: a survey”, Congr. Numer., 160 (2003), 47–68 | MR
[8] Chvatal V., “Mastermind”, Combinatorica, 3 (1983), 325–329 | DOI | MR | Zbl
[9] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 419 pp.; Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP–Completeness, W. H. Freeman and Company, 1979 | MR | Zbl
[10] Guo X., Faheem M., Zahid Z., Nazeer W., Li J., “Fault-tolerant resolvability in some classes of line graphs”, Math. Probl. in Engineering, 4 (2020), 1–8 | DOI | MR
[11] Harary F., Melter R. A., “On the metric dimension of a graph”, Ars Comb., 2 (1976), 191–195 | MR | Zbl
[12] Hernando C., Mora M., Slater R. J., Wood D. R., “Fault-tolerant metric dimension of graphs”, Proc. Int. Conf. Convexity in Discrete Structures, Ramanujan Math. Soc. Lect. Notes, 5, 2008, 81–85 | MR | Zbl
[13] Honkala I., Laihonen T., “On locating-dominating sets in infinite grids”, Eur. J. Comb., 27:2 (2006), 218–227 | DOI | MR | Zbl
[14] Javaid I., Salman M., Chaudhry M. A., Shokat S., “Fault-tolerance in resolvability”, Util. Math., 80 (2009), 263–275 | MR | Zbl
[15] Jesse G., “Metric dimension and pattern avoidance in graphs”, Discret. Appl. Math., 284 (2020), 1–7 | DOI | MR | Zbl
[16] Bensmail J., Inerney F. M., Nisse N., “Metric dimension: from graphs to oriented graphs”, Discret. Appl. Math., 323 (2020), 28–42 | DOI | MR
[17] Khuller S., Raghavachari B., Rosenfeld A., “Landmarks in graphs”, Discrete Appl. Math., 70 (1996), 217–229 | DOI | MR | Zbl
[18] Rehman S. ur, Imran M., Javaid I., “On the metric dimension of arithmetic graph of a composite number”, Symmetry, 12:4 (2020), 607, 10 pp. | DOI
[19] Raza H., Hayat S., Imran M., Pan X. F., “Fault-tolerant resolvability and extremal structures of graphs”, Mathematics, 7:1 (2019), 78, 19 pp. | DOI
[20] Raza H., Hayat S., Pan X. F., “On the fault-tolerant metric dimension of convex polytopes”, Appl. Math. Comput., 339 (2018), 172–185 | MR | Zbl
[21] Raza H., Hayat S., Pan X. F., “On the fault-tolerant metric dimension of certain interconnection networks”, J. Appl. Math. Comput., 60:1 (2019), 517–535 | DOI | MR | Zbl
[22] Raza H., Liu J. B., Qu S., “On mixed metric dimension of rotationally symmetric graphs”, IEEE Access, 8 (2020), 11560–11569 | DOI
[23] Salman M., Javaid I., Chaudhry M. A., Minimum fault-tolerant, local and strong metric dimension of graphs, 2014, 19 pp., arXiv: 1409.2695
[24] Sharma S. K., Bhat V. K., “Metric dimension of heptagonal circular ladder”, Discrete Math. Algorithms Appl., 13:1 (2021), 2050095, 17 pp. | DOI | MR | Zbl
[25] Sharma S. K., Bhat V. K., “Fault-tolerant metric dimension of two-fold heptagonal-nonagonal circular ladder”, Discrete Math. Algorithms Appl., 14:3 (2022), 2150132 | DOI | MR | Zbl
[26] Sharma S. K., Bhat V. K., “On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$, and $\mathfrak{L}_{n}$”, J. Algebra Comb. Discrete Struct. Appl., 8:3 (2021), 197–212 | MR | Zbl
[27] Sharma S. K., Bhat V. K., “Edge metric dimension and edge basis of one-heptagonal carbon nanocone networks”, IEEE Access, 10 (2022), 29558–29566 | DOI
[28] Siddiqui H. M. A., Hayat S., Khan A., Imran M., Razzaq A., Liu J. -B., “Resolvability and fault-tolerant resolvability structures of convex polytopes”, Theor. Comput. Sci., 796 (2019), 114–128 | DOI | MR | Zbl
[29] Slater P. J., “Leaves of trees”, Congr. Numer., 14 (1975), 549–559 | MR
[30] Soderberg S., Shapiro H. S., “A combinatory detection problem”, Amer. Math. Mon., 70:10 (1963), 1066–1070 | DOI | MR | Zbl
[31] Stojmenovic I., “Direct interconnection networks”, Parallel and Distributed Computing Handbook, eds. Zomaya A. Y., McGraw-Hill, 1996, 537–567
[32] Xuanlong M., Shi Y., “The metric dimension of the enhanced power graph of a finite group”, J. Algebra. Appl., 19:1 (2020), 2050020 | DOI | MR | Zbl
[33] Yuezhong Z., Hou L., Hou B., Wu W., Du D., Gao S., “On the metric dimension of the folded $n$-cube”, Optim. Lett., 14:1 (2020), 249–257 | DOI | MR | Zbl