Fault-tolerant resolvability of some graphs of convex polytopes
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 108-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fault-tolerant resolvability is an extension of metric resolvability in graphs with several intelligent systems applications, for example, network optimization, robot navigation, and sensor networking. The graphs of convex polytopes, which are rotationally symmetric, are essential in intelligent networks due to the uniform rate of data transformation to all nodes. A resolving set is an ordered set $\mathbb{W}$ of vertices of a connected graph $G$ in which the vector of distances to the vertices in $\mathbb{W}$ uniquely determines all the vertices of the graph $G$. The minimum cardinality of a resolving set of $G$ is known as the metric dimension of $G$. If $\mathbb{W}\setminus \rho$ is also a resolving set for each $\rho$ in $\mathbb{W}$. In that case, $\mathbb{W}$ is said to be a fault-tolerant resolving set. The fault-tolerant metric dimension of $G$ is the minimum cardinality of such a set $\mathbb{W}$. The metric dimension and the fault-tolerant metric dimension for three families of convex polytope graphs are studied. Our main results affirm that three families, as mentioned above, have constant fault-tolerant resolvability structures.
Keywords: Convex polytopes, metric dimension, fault-tolerant metric dimension, connected graph, planar graph.
@article{DM_2022_34_4_a8,
     author = {S. K. Sharma and H. Raza and V. K. Bhat},
     title = {Fault-tolerant resolvability of some graphs of convex polytopes},
     journal = {Diskretnaya Matematika},
     pages = {108--122},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a8/}
}
TY  - JOUR
AU  - S. K. Sharma
AU  - H. Raza
AU  - V. K. Bhat
TI  - Fault-tolerant resolvability of some graphs of convex polytopes
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 108
EP  - 122
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a8/
LA  - ru
ID  - DM_2022_34_4_a8
ER  - 
%0 Journal Article
%A S. K. Sharma
%A H. Raza
%A V. K. Bhat
%T Fault-tolerant resolvability of some graphs of convex polytopes
%J Diskretnaya Matematika
%D 2022
%P 108-122
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_4_a8/
%G ru
%F DM_2022_34_4_a8
S. K. Sharma; H. Raza; V. K. Bhat. Fault-tolerant resolvability of some graphs of convex polytopes. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 108-122. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a8/

[1] Bǎca M., “Labellings of two classes of convex polytopes”, Util. Math., 34 (1988), 24–31 | MR | Zbl

[2] Basak M., Saha L., Das G. K., Tiwary K., “Fault-tolerant metric dimension of circulant graphs $C_{n}(1, 2, 3)$”, Theor. Comput. Sci., 817 (2020), 66–79 | DOI | MR | Zbl

[3] Bashir H., Zahid Z., Kashif A., Zafar S., Liu J. B., “On 2-metric resolvability in rotationally-symmetric graphs”, J. Intell. Fuzzy Syst., 2021, 1–9

[4] Beerloiva Z., Eberhard F., Erlebach T., Hall A., Hoffmann M., Mihalák M., Ram L., “Network discovery and verification”, IEEE J. Sel. Area Commun., 24 (2006), 2168–2181 | DOI | MR

[5] Chartrand G., Eroh L., Johnson M. A., Oellermann O. R., “Resolvability in graphs and the metric dimension of a graph”, Discrete Appl. Math., 105 (2000), 99–113 | DOI | MR | Zbl

[6] Chartrand G., Saenpholphat V., Zhang R., “The independent resolving number of a graph”, Math. Bohem., 128 (2003), 379–393 | DOI | MR | Zbl

[7] Chartrand G., Zhang R., “The theory and applications of resolvability in graphs: a survey”, Congr. Numer., 160 (2003), 47–68 | MR

[8] Chvatal V., “Mastermind”, Combinatorica, 3 (1983), 325–329 | DOI | MR | Zbl

[9] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 419 pp.; Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP–Completeness, W. H. Freeman and Company, 1979 | MR | Zbl

[10] Guo X., Faheem M., Zahid Z., Nazeer W., Li J., “Fault-tolerant resolvability in some classes of line graphs”, Math. Probl. in Engineering, 4 (2020), 1–8 | DOI | MR

[11] Harary F., Melter R. A., “On the metric dimension of a graph”, Ars Comb., 2 (1976), 191–195 | MR | Zbl

[12] Hernando C., Mora M., Slater R. J., Wood D. R., “Fault-tolerant metric dimension of graphs”, Proc. Int. Conf. Convexity in Discrete Structures, Ramanujan Math. Soc. Lect. Notes, 5, 2008, 81–85 | MR | Zbl

[13] Honkala I., Laihonen T., “On locating-dominating sets in infinite grids”, Eur. J. Comb., 27:2 (2006), 218–227 | DOI | MR | Zbl

[14] Javaid I., Salman M., Chaudhry M. A., Shokat S., “Fault-tolerance in resolvability”, Util. Math., 80 (2009), 263–275 | MR | Zbl

[15] Jesse G., “Metric dimension and pattern avoidance in graphs”, Discret. Appl. Math., 284 (2020), 1–7 | DOI | MR | Zbl

[16] Bensmail J., Inerney F. M., Nisse N., “Metric dimension: from graphs to oriented graphs”, Discret. Appl. Math., 323 (2020), 28–42 | DOI | MR

[17] Khuller S., Raghavachari B., Rosenfeld A., “Landmarks in graphs”, Discrete Appl. Math., 70 (1996), 217–229 | DOI | MR | Zbl

[18] Rehman S. ur, Imran M., Javaid I., “On the metric dimension of arithmetic graph of a composite number”, Symmetry, 12:4 (2020), 607, 10 pp. | DOI

[19] Raza H., Hayat S., Imran M., Pan X. F., “Fault-tolerant resolvability and extremal structures of graphs”, Mathematics, 7:1 (2019), 78, 19 pp. | DOI

[20] Raza H., Hayat S., Pan X. F., “On the fault-tolerant metric dimension of convex polytopes”, Appl. Math. Comput., 339 (2018), 172–185 | MR | Zbl

[21] Raza H., Hayat S., Pan X. F., “On the fault-tolerant metric dimension of certain interconnection networks”, J. Appl. Math. Comput., 60:1 (2019), 517–535 | DOI | MR | Zbl

[22] Raza H., Liu J. B., Qu S., “On mixed metric dimension of rotationally symmetric graphs”, IEEE Access, 8 (2020), 11560–11569 | DOI

[23] Salman M., Javaid I., Chaudhry M. A., Minimum fault-tolerant, local and strong metric dimension of graphs, 2014, 19 pp., arXiv: 1409.2695

[24] Sharma S. K., Bhat V. K., “Metric dimension of heptagonal circular ladder”, Discrete Math. Algorithms Appl., 13:1 (2021), 2050095, 17 pp. | DOI | MR | Zbl

[25] Sharma S. K., Bhat V. K., “Fault-tolerant metric dimension of two-fold heptagonal-nonagonal circular ladder”, Discrete Math. Algorithms Appl., 14:3 (2022), 2150132 | DOI | MR | Zbl

[26] Sharma S. K., Bhat V. K., “On metric dimension of plane graphs $\mathfrak{J}_{n}$, $\mathfrak{K}_{n}$, and $\mathfrak{L}_{n}$”, J. Algebra Comb. Discrete Struct. Appl., 8:3 (2021), 197–212 | MR | Zbl

[27] Sharma S. K., Bhat V. K., “Edge metric dimension and edge basis of one-heptagonal carbon nanocone networks”, IEEE Access, 10 (2022), 29558–29566 | DOI

[28] Siddiqui H. M. A., Hayat S., Khan A., Imran M., Razzaq A., Liu J. -B., “Resolvability and fault-tolerant resolvability structures of convex polytopes”, Theor. Comput. Sci., 796 (2019), 114–128 | DOI | MR | Zbl

[29] Slater P. J., “Leaves of trees”, Congr. Numer., 14 (1975), 549–559 | MR

[30] Soderberg S., Shapiro H. S., “A combinatory detection problem”, Amer. Math. Mon., 70:10 (1963), 1066–1070 | DOI | MR | Zbl

[31] Stojmenovic I., “Direct interconnection networks”, Parallel and Distributed Computing Handbook, eds. Zomaya A. Y., McGraw-Hill, 1996, 537–567

[32] Xuanlong M., Shi Y., “The metric dimension of the enhanced power graph of a finite group”, J. Algebra. Appl., 19:1 (2020), 2050020 | DOI | MR | Zbl

[33] Yuezhong Z., Hou L., Hou B., Wu W., Du D., Gao S., “On the metric dimension of the folded $n$-cube”, Optim. Lett., 14:1 (2020), 249–257 | DOI | MR | Zbl