Probability that given vertices belong to the same connected component of random equiprobable mapping
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The random equiprobable mappings of finite set $S$ into itself are considered. The probability that $k$ fixed elements of $S$ belong to the same connected component is studied. The limit of this probability as $|S|\to \infty$ is found.
Keywords: equiprobable random mappings of finite sets, random oriented graphs, connected components, limit theorems.
@article{DM_2022_34_4_a2,
     author = {A. M. Zubkov and P. V. Khalipov},
     title = {Probability that given vertices belong to the same connected component of random equiprobable mapping},
     journal = {Diskretnaya Matematika},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - P. V. Khalipov
TI  - Probability that given vertices belong to the same connected component of random equiprobable mapping
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 28
EP  - 35
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/
LA  - ru
ID  - DM_2022_34_4_a2
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A P. V. Khalipov
%T Probability that given vertices belong to the same connected component of random equiprobable mapping
%J Diskretnaya Matematika
%D 2022
%P 28-35
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/
%G ru
%F DM_2022_34_4_a2
A. M. Zubkov; P. V. Khalipov. Probability that given vertices belong to the same connected component of random equiprobable mapping. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 28-35. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/

[1] Harris B., “Probability distributions related to random mappings”, Ann. Math. Statist., 31:4 (1960), 1045–1062 | DOI | MR | Zbl

[2] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp.

[3] Zubkov A. M., Khalipov P. V., “Veroyatnost popadaniya neskolkikh tochek v odnu komponentu sluchainogo otobrazheniya”, Obozr. prikl. i promyshl. matem., 16:3 (2009)

[4] Pittel B., “On distibutions related to transitive closures of random finite mappings”, Ann. Probab., 11:2 (1983), 428–441 | DOI | MR | Zbl

[5] Mironkin V. O., “Veroyatnost kollizii dvukh sluchainykh tochek dlya stepeni sluchainogo otobrazheniya”, Obozr. prikl. i promyshl. matem., 22:4 (2015), 403–409 | MR

[6] Mironkin V. O., “Kollizii i intsidentnost vershin komponentam v grafe $k$-kratnoi iteratsii ravnoveroyatnogo sluchainogo otobrazheniya”, Diskretnaya matematika, 31:4 (2019), 38–52 | MR