Probability that given vertices belong to the same connected component of random equiprobable mapping
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 28-35
Voir la notice de l'article provenant de la source Math-Net.Ru
The random equiprobable mappings of finite set $S$ into itself are considered. The probability that $k$ fixed elements of $S$ belong to the same connected component is studied. The limit of this probability as $|S|\to \infty$ is found.
Keywords:
equiprobable random mappings of finite sets, random oriented graphs, connected components, limit theorems.
@article{DM_2022_34_4_a2,
author = {A. M. Zubkov and P. V. Khalipov},
title = {Probability that given vertices belong to the same connected component of random equiprobable mapping},
journal = {Diskretnaya Matematika},
pages = {28--35},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/}
}
TY - JOUR AU - A. M. Zubkov AU - P. V. Khalipov TI - Probability that given vertices belong to the same connected component of random equiprobable mapping JO - Diskretnaya Matematika PY - 2022 SP - 28 EP - 35 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/ LA - ru ID - DM_2022_34_4_a2 ER -
A. M. Zubkov; P. V. Khalipov. Probability that given vertices belong to the same connected component of random equiprobable mapping. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 28-35. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/