Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_4_a2, author = {A. M. Zubkov and P. V. Khalipov}, title = {Probability that given vertices belong to the same connected component of random equiprobable mapping}, journal = {Diskretnaya Matematika}, pages = {28--35}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/} }
TY - JOUR AU - A. M. Zubkov AU - P. V. Khalipov TI - Probability that given vertices belong to the same connected component of random equiprobable mapping JO - Diskretnaya Matematika PY - 2022 SP - 28 EP - 35 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/ LA - ru ID - DM_2022_34_4_a2 ER -
A. M. Zubkov; P. V. Khalipov. Probability that given vertices belong to the same connected component of random equiprobable mapping. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 28-35. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a2/
[1] Harris B., “Probability distributions related to random mappings”, Ann. Math. Statist., 31:4 (1960), 1045–1062 | DOI | MR | Zbl
[2] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp.
[3] Zubkov A. M., Khalipov P. V., “Veroyatnost popadaniya neskolkikh tochek v odnu komponentu sluchainogo otobrazheniya”, Obozr. prikl. i promyshl. matem., 16:3 (2009)
[4] Pittel B., “On distibutions related to transitive closures of random finite mappings”, Ann. Probab., 11:2 (1983), 428–441 | DOI | MR | Zbl
[5] Mironkin V. O., “Veroyatnost kollizii dvukh sluchainykh tochek dlya stepeni sluchainogo otobrazheniya”, Obozr. prikl. i promyshl. matem., 22:4 (2015), 403–409 | MR
[6] Mironkin V. O., “Kollizii i intsidentnost vershin komponentam v grafe $k$-kratnoi iteratsii ravnoveroyatnogo sluchainogo otobrazheniya”, Diskretnaya matematika, 31:4 (2019), 38–52 | MR