Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_3_a9, author = {V. V. Kharlamov}, title = {A generalized model of the {Colonel} {Blotto} stochastic game}, journal = {Diskretnaya Matematika}, pages = {136--154}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a9/} }
V. V. Kharlamov. A generalized model of the Colonel Blotto stochastic game. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 136-154. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a9/
[1] Kaminsky K. S., Luks E. M., Nelson P. I., “Strategy, nontransitive dominance and the exponential distribution”, Australian Journal of Statistics, 26:2 (1984), 111–118 | DOI | MR | Zbl
[2] Borel E., “La théorie du jeu et les équations intégrales a noyau symétrique”, Comptes rendus de l'Académie des Sciences, 173 (1921)
[3] Kingman J. F. C., Poisson Processes, Clarendon Press, 1992, 112 pp. | MR
[4] Kovenock D., Roberson B., “Generalizations of the general lotto and colonel blotto games”, Economic Theory, 71:3 (2021), 997–1032 | DOI | MR | Zbl
[5] Rinott Y., Scarsini M., Yaming Yu, “A Colonel Blotto gladiator game”, Mathematics of Operations Research, 37:4 (2012), 574–590 | DOI | MR | Zbl
[6] Kharlamov V. V., “Ob asimptoticheskikh strategiyakh v stokhasticheskoi igre polkovnika Blotto”, Teoriya veroyatnostei i ee primeneniya, 67:2 (2022), 396–407 | Zbl