On the approximation of high-order binary Markov chains by parsimonious models
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 114-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two parsimonious models of binary high-order Markov chains and discover their ability to approximate arbitrary high-order Markov chains. Two types of global measures for approximation accuracy are introduced, theoretical and experimental results are obtained for these measures and for the considered parsimonious models. New consistent statistical parameter estimator is constructed for parsimonious model based on two-layer artificial neural network.
Keywords: high-order Markov chain, parsimonious model, approximation, artificial neural network, statistical estimation.
@article{DM_2022_34_3_a8,
     author = {Yu. S. Kharin and V. A. Voloshko},
     title = {On the approximation of high-order binary {Markov} chains by parsimonious models},
     journal = {Diskretnaya Matematika},
     pages = {114--135},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/}
}
TY  - JOUR
AU  - Yu. S. Kharin
AU  - V. A. Voloshko
TI  - On the approximation of high-order binary Markov chains by parsimonious models
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 114
EP  - 135
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/
LA  - ru
ID  - DM_2022_34_3_a8
ER  - 
%0 Journal Article
%A Yu. S. Kharin
%A V. A. Voloshko
%T On the approximation of high-order binary Markov chains by parsimonious models
%J Diskretnaya Matematika
%D 2022
%P 114-135
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/
%G ru
%F DM_2022_34_3_a8
Yu. S. Kharin; V. A. Voloshko. On the approximation of high-order binary Markov chains by parsimonious models. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 114-135. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/

[1] Lütkepohl H., New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin, 2005, xxi+764 pp. | MR

[2] Kedem B., Fokianos K., Regression Models for Time Series Analysis, Wiley, Hoboken, 2002, 360 pp. | MR | Zbl

[3] Weiss C. H., An Introduction to Discrete-Valued Time Series, Wiley, Hoboken, 2018, 304 pp. | Zbl

[4] MacDonald I. L., Zucchini W., Hidden Markov and Other Models for Discrete-valued Time Series, Chapman and Hall, New York, 1997, 256 pp. | MR | Zbl

[5] Billingsley P., “Statistical methods in Markov chains”, Ann. Math. Statist., 32:1 (1961), 12–40 | DOI | MR | Zbl

[6] Fokianos K., Fried R., Kharin Yu. S., Voloshko V., “Statistical Analysis of Multivariate Discrete-Valued Time Series”, J. Multivar. Anal., 188:C (2022) | DOI | MR | Zbl

[7] Kharin Yu. S., Voloshko V. A., Dernakova O. V., Malyugin V. I., Kharin A. Yu., “Statisticheskoe prognozirovanie dinamiki epidemiologicheskikh pokazatelei zabolevaemosti COVID-19 v Respublike Belarus”, Zh. Belorus. gos. un-ta Matem. Inform., 3 (2020), 36–50

[8] Dub D. L., Veroyatnostnye protsessy, Inostrannaya literatura, M., 1956, 607 pp.

[9] Kharin Yu. S., “Tsepi Markova s $r$-chastichnymi svyazyami i ikh statisticheskoe otsenivanie”, Doklady NAN Belarusi, 48:1 (2004), 40–44 | MR | Zbl

[10] Kharin Yu. S., Petlitskii A. I., “Tsep Markova $s$-go poryadka s $r$ chastichnymi svyazyami i statisticheskie vyvody o ee parametrakh”, Diskretnaya matematika, 19:2 (2007), 109–130 | Zbl

[11] Kharin Yu. S., Maltsew M. V., “Statistical analysis of high-order dependencies”, Acta Comment. Univ. Tartuensis Mathem., 21:1 (2017), 79–91 | MR | Zbl

[12] Buhlmann P., Wyner A., “Variable Length Markov Chains”, Ann. Statist., 27:2 (1999), 480–513 | DOI | MR | Zbl

[13] Jacobs P. A., Lewis P. A. W., “Stationary discrete autoregressive-moving average time series generated by mixtures”, J. Time Series Anal., 4:1 (1983), 19–36 | DOI | MR | Zbl

[14] Raftery A., Tavare S., “Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model”, J. Appl. Statist., 43:1 (1994), 179–199 | DOI | Zbl

[15] Maksimov Yu. I., “O tsepyakh Markova, svyazannykh s dvoichnymi registrami sdviga so sluchainymi elementami”, Trudy po diskretnoi matematike, 1 (1997), 203–220 | Zbl

[16] Alzaid A. A., Al-Osh M., “An Integer-Valued $p$-th Order Autoregressive Structure (INAR(p)) Process”, J. Appl. Probab., 27:2 (1990), 314–324 | DOI | MR | Zbl

[17] Kharin Yu. S., Voloshko V. A., Medved E. A., “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Math. Meth. Statist., 27:2 (2018), 103–118 | DOI | MR | Zbl

[18] Kharin Yu., Voloshko V., “Robust Estimation for Binomial Conditionally Nonlinear Autoregressive Time Series Based on Multivariate Conditional Frequencies”, J. Multivar. Anal., 185 (2021), 11–27 | DOI | MR

[19] Kharin Yu. S., Voloshko V. A., “Binomialnaya uslovno nelineinaya avtoregressionnaya model diskretnogo vremennogo ryada i ee veroyatnostno-statisticheskie svoistva”, Trudy In-ta matem. NAN Belarusi, 26:1 (2019), 95–105 | MR

[20] Kharin Yu. S., “Neirosetevye modeli binomialnykh vremennykh ryadov v zadachakh analiza dannykh”, Doklady NAN Belarusi, 65:6 (2021), 654–660 | MR

[21] Zubkov A. M., Serov A. A., “Testing the NIST Statistical Test Suite on artificial pseudorandom sequences”, Matematicheskie voprosy kriptografii, 10:2 (2019), 89–96 | MR | Zbl

[22] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii mnogikh peremennykh superpozitsiei funktsii odnoi peremennoi i slozheniya”, Doklady Akademii nauk SSSR, 114:5 (1957), 953–956 | Zbl

[23] Cybenko G., “Approximation by superpositions of sigmoidal functions”, Math. of Control, Signals, and Systems, 2 (1989), 303–314 | DOI | MR | Zbl

[24] Amari S., Nagaoka H., Methods of Information Geometry, Oxford University Press, 2000, 206 pp. | MR | Zbl

[25] Schlafli L., Gesammelte mathematische Abhandlugen, v. 1, Birkhauser, Basel, 1850, 392 pp. | MR

[26] Zuev Yu. A., “Kombinatorno-veroyatnostnye i geometricheskie metody v porogovoi logike”, Diskretnaya matematika, 3:2 (1991), 47–57

[27] Gantmakher F.R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR

[28] Mardia K. V., Kent J. T., Billy J. M., Multivariate Analysis, Academic Press, New York, 1979, 521 pp. | MR | Zbl

[29] Kollo T., Rosen D., Multivariate Statistics and Matrices, Springer, Dordrecht, 2005, 506 pp.