Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_3_a8, author = {Yu. S. Kharin and V. A. Voloshko}, title = {On the approximation of high-order binary {Markov} chains by parsimonious models}, journal = {Diskretnaya Matematika}, pages = {114--135}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/} }
TY - JOUR AU - Yu. S. Kharin AU - V. A. Voloshko TI - On the approximation of high-order binary Markov chains by parsimonious models JO - Diskretnaya Matematika PY - 2022 SP - 114 EP - 135 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/ LA - ru ID - DM_2022_34_3_a8 ER -
Yu. S. Kharin; V. A. Voloshko. On the approximation of high-order binary Markov chains by parsimonious models. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 114-135. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a8/
[1] Lütkepohl H., New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin, 2005, xxi+764 pp. | MR
[2] Kedem B., Fokianos K., Regression Models for Time Series Analysis, Wiley, Hoboken, 2002, 360 pp. | MR | Zbl
[3] Weiss C. H., An Introduction to Discrete-Valued Time Series, Wiley, Hoboken, 2018, 304 pp. | Zbl
[4] MacDonald I. L., Zucchini W., Hidden Markov and Other Models for Discrete-valued Time Series, Chapman and Hall, New York, 1997, 256 pp. | MR | Zbl
[5] Billingsley P., “Statistical methods in Markov chains”, Ann. Math. Statist., 32:1 (1961), 12–40 | DOI | MR | Zbl
[6] Fokianos K., Fried R., Kharin Yu. S., Voloshko V., “Statistical Analysis of Multivariate Discrete-Valued Time Series”, J. Multivar. Anal., 188:C (2022) | DOI | MR | Zbl
[7] Kharin Yu. S., Voloshko V. A., Dernakova O. V., Malyugin V. I., Kharin A. Yu., “Statisticheskoe prognozirovanie dinamiki epidemiologicheskikh pokazatelei zabolevaemosti COVID-19 v Respublike Belarus”, Zh. Belorus. gos. un-ta Matem. Inform., 3 (2020), 36–50
[8] Dub D. L., Veroyatnostnye protsessy, Inostrannaya literatura, M., 1956, 607 pp.
[9] Kharin Yu. S., “Tsepi Markova s $r$-chastichnymi svyazyami i ikh statisticheskoe otsenivanie”, Doklady NAN Belarusi, 48:1 (2004), 40–44 | MR | Zbl
[10] Kharin Yu. S., Petlitskii A. I., “Tsep Markova $s$-go poryadka s $r$ chastichnymi svyazyami i statisticheskie vyvody o ee parametrakh”, Diskretnaya matematika, 19:2 (2007), 109–130 | Zbl
[11] Kharin Yu. S., Maltsew M. V., “Statistical analysis of high-order dependencies”, Acta Comment. Univ. Tartuensis Mathem., 21:1 (2017), 79–91 | MR | Zbl
[12] Buhlmann P., Wyner A., “Variable Length Markov Chains”, Ann. Statist., 27:2 (1999), 480–513 | DOI | MR | Zbl
[13] Jacobs P. A., Lewis P. A. W., “Stationary discrete autoregressive-moving average time series generated by mixtures”, J. Time Series Anal., 4:1 (1983), 19–36 | DOI | MR | Zbl
[14] Raftery A., Tavare S., “Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model”, J. Appl. Statist., 43:1 (1994), 179–199 | DOI | Zbl
[15] Maksimov Yu. I., “O tsepyakh Markova, svyazannykh s dvoichnymi registrami sdviga so sluchainymi elementami”, Trudy po diskretnoi matematike, 1 (1997), 203–220 | Zbl
[16] Alzaid A. A., Al-Osh M., “An Integer-Valued $p$-th Order Autoregressive Structure (INAR(p)) Process”, J. Appl. Probab., 27:2 (1990), 314–324 | DOI | MR | Zbl
[17] Kharin Yu. S., Voloshko V. A., Medved E. A., “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Math. Meth. Statist., 27:2 (2018), 103–118 | DOI | MR | Zbl
[18] Kharin Yu., Voloshko V., “Robust Estimation for Binomial Conditionally Nonlinear Autoregressive Time Series Based on Multivariate Conditional Frequencies”, J. Multivar. Anal., 185 (2021), 11–27 | DOI | MR
[19] Kharin Yu. S., Voloshko V. A., “Binomialnaya uslovno nelineinaya avtoregressionnaya model diskretnogo vremennogo ryada i ee veroyatnostno-statisticheskie svoistva”, Trudy In-ta matem. NAN Belarusi, 26:1 (2019), 95–105 | MR
[20] Kharin Yu. S., “Neirosetevye modeli binomialnykh vremennykh ryadov v zadachakh analiza dannykh”, Doklady NAN Belarusi, 65:6 (2021), 654–660 | MR
[21] Zubkov A. M., Serov A. A., “Testing the NIST Statistical Test Suite on artificial pseudorandom sequences”, Matematicheskie voprosy kriptografii, 10:2 (2019), 89–96 | MR | Zbl
[22] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii mnogikh peremennykh superpozitsiei funktsii odnoi peremennoi i slozheniya”, Doklady Akademii nauk SSSR, 114:5 (1957), 953–956 | Zbl
[23] Cybenko G., “Approximation by superpositions of sigmoidal functions”, Math. of Control, Signals, and Systems, 2 (1989), 303–314 | DOI | MR | Zbl
[24] Amari S., Nagaoka H., Methods of Information Geometry, Oxford University Press, 2000, 206 pp. | MR | Zbl
[25] Schlafli L., Gesammelte mathematische Abhandlugen, v. 1, Birkhauser, Basel, 1850, 392 pp. | MR
[26] Zuev Yu. A., “Kombinatorno-veroyatnostnye i geometricheskie metody v porogovoi logike”, Diskretnaya matematika, 3:2 (1991), 47–57
[27] Gantmakher F.R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR
[28] Mardia K. V., Kent J. T., Billy J. M., Multivariate Analysis, Academic Press, New York, 1979, 521 pp. | MR | Zbl
[29] Kollo T., Rosen D., Multivariate Statistics and Matrices, Springer, Dordrecht, 2005, 506 pp.