Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_3_a2, author = {D. A. Dolgov}, title = {On continuants of continued fractions with rational partial quotients}, journal = {Diskretnaya Matematika}, pages = {34--51}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a2/} }
D. A. Dolgov. On continuants of continued fractions with rational partial quotients. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 34-51. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a2/
[1] Sorenson J., The $k$-ary GCD algorithm, Technical Report CS-TR-90-979, University of Wisconsin, Madison, 1990, 18 pp.
[2] Thue A., “Et par antydninger ti1 en taltheoretisk metode”, Kra. Vidensk. Selsk. Forh, 7 (1902), 57–75
[3] Aubry L., “Un théoréme d'arithmétique”, Mathesis, 4:3 (1913)
[4] Vinogradov I. M., “On a general theorem concerning the distribution of the residues and non-residues of powers”, Trans. Amer. Math. Soc., 29 (1927), 209–217 | DOI | MR | Zbl
[5] Sloan N. J. A., Fibonacci polynomials, The On-Line Encyclopedia of Integer Sequences https://oeis.org/wiki/Fibonacci_polynomials
[6] Muir T., A Treatise on the Theory of Determinants, Dover Publ., New York, 1960, 766 pp. | MR
[7] Gelfond A. O., Ischislenie konechnykh raznostei, 2-e izd., GIFML, M., 1959, 400 pp. | MR
[8] Lando S. K., Lektsii o proizvodyaschikh funktsiyakh, MTsNMO, M., 2007, 144 pp.