Critical branching processes evolving in a unfavorable random environment
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 20-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{Z_{n},n=0,1,2,\dots\}$ be a critical branching process in a random environment, and $\{S_{n},n=0,1,2,\dots\}$ be its associated random walk. It is known that if the increments of this random walk belong (without centering) to the domain of attraction of a stable law, then there exists a regularly varying at infinity sequence $a_{1},a_{2},\dots$ such that conditional distributions \begin{equation*} \mathbf{P}\bigg(\frac{S_{n}}{a_{n}}\leq x\Bigm| Z_{n}>0\bigg),\quad x\in(-\infty,+\infty), \end{equation*} converge weakly to the distribution of strictly positive proper random variable. In this paper we add to this result the description of the asymptotic behavior of the probability \begin{equation*} \mathbf{P}(Z_{n}>0, S_{n}\leq \varphi(n)), \end{equation*} where $\varphi (n)\to \infty$ for $n\to \infty$ in such a way that $\varphi (n)=o(a_{n})$.
Keywords: branching process, unfavorable random environment, non-extinction probability.
@article{DM_2022_34_3_a1,
     author = {V. A. Vatutin and E. E. Dyakonova},
     title = {Critical branching processes evolving in a unfavorable random environment},
     journal = {Diskretnaya Matematika},
     pages = {20--33},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. Dyakonova
TI  - Critical branching processes evolving in a unfavorable random environment
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 20
EP  - 33
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a1/
LA  - ru
ID  - DM_2022_34_3_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. Dyakonova
%T Critical branching processes evolving in a unfavorable random environment
%J Diskretnaya Matematika
%D 2022
%P 20-33
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_3_a1/
%G ru
%F DM_2022_34_3_a1
V. A. Vatutin; E. E. Dyakonova. Critical branching processes evolving in a unfavorable random environment. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 20-33. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a1/

[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in a random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1987, xix+494 pp. | MR | Zbl

[4] Doney R. A., “Local behavior of first passage probabilities”, Probab. Theory Relat. Fields, 152:3–4 (2012), 559–588 | DOI | MR | Zbl

[5] Kersting G., Vatutin V., Discrete time branching processes in random environment, Wiley, London, 2017, xi+306 pp. | MR | Zbl

[6] Vatutin V. A., Wachtel V., “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1–2 (2009), 177–217 | DOI | MR | Zbl

[7] Zolotarev V. M., “Preobrazovaniya Mellina–Stiltesa v teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 2:4 (1957), 444–469 | MR

[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 772 pp. | MR