Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_3_a1, author = {V. A. Vatutin and E. E. Dyakonova}, title = {Critical branching processes evolving in a unfavorable random environment}, journal = {Diskretnaya Matematika}, pages = {20--33}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a1/} }
V. A. Vatutin; E. E. Dyakonova. Critical branching processes evolving in a unfavorable random environment. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 20-33. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a1/
[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in a random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl
[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1987, xix+494 pp. | MR | Zbl
[4] Doney R. A., “Local behavior of first passage probabilities”, Probab. Theory Relat. Fields, 152:3–4 (2012), 559–588 | DOI | MR | Zbl
[5] Kersting G., Vatutin V., Discrete time branching processes in random environment, Wiley, London, 2017, xi+306 pp. | MR | Zbl
[6] Vatutin V. A., Wachtel V., “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1–2 (2009), 177–217 | DOI | MR | Zbl
[7] Zolotarev V. M., “Preobrazovaniya Mellina–Stiltesa v teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 2:4 (1957), 444–469 | MR
[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 772 pp. | MR