Weakly supercritical branching process in unfavourable environment
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{Z_{n}\}$ be a weakly supercritical branching process in a random environment, and $\{S_{n}\}$ be its associated random walk. We consider a natural martingale $W_{n}=Z_{n}\exp(-S_{n})$, where $n\geq 0$. We prove two limit theorems for the random process $W_{\lfloor nt\rfloor}$, where $t\in [0,1]$, which is considered either under the condition on the unfavourable environment $\{\max_{1\leq i\leq n}S_{i}\}$ or under the condition on the unfavourable environment $\{S_{n}\leq u\}$, where $u$ is some positive constant.
Keywords:
weakly supercritical branching process in a random environment, conditional functional limit theorems
@article{DM_2022_34_3_a0,
author = {V. I. Afanasyev},
title = {Weakly supercritical branching process in unfavourable environment},
journal = {Diskretnaya Matematika},
pages = {3--19},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/}
}
V. I. Afanasyev. Weakly supercritical branching process in unfavourable environment. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/