Weakly supercritical branching process in unfavourable environment
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{Z_{n}\}$ be a weakly supercritical branching process in a random environment, and $\{S_{n}\}$ be its associated random walk. We consider a natural martingale $W_{n}=Z_{n}\exp(-S_{n})$, where $n\geq 0$. We prove two limit theorems for the random process $W_{\lfloor nt\rfloor}$, where $t\in [0,1]$, which is considered either under the condition on the unfavourable environment $\{\max_{1\leq i\leq n}S_{i}\}$ or under the condition on the unfavourable environment $\{S_{n}\leq u\}$, where $u$ is some positive constant.
Keywords: weakly supercritical branching process in a random environment, conditional functional limit theorems
@article{DM_2022_34_3_a0,
     author = {V. I. Afanasyev},
     title = {Weakly supercritical branching process in unfavourable environment},
     journal = {Diskretnaya Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Weakly supercritical branching process in unfavourable environment
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 3
EP  - 19
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/
LA  - ru
ID  - DM_2022_34_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Weakly supercritical branching process in unfavourable environment
%J Diskretnaya Matematika
%D 2022
%P 3-19
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/
%G ru
%F DM_2022_34_3_a0
V. I. Afanasyev. Weakly supercritical branching process in unfavourable environment. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/

[1] Athreya K. B., Karlin S., “Branching processes with random environments II: Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843-1858 | DOI | MR | Zbl

[2] Tanny D., “A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means”, Stoch. Proc. Appl., 28 (1998), 123-139 | DOI | MR

[3] Guivarc'h Y., Liu Q., “Proprietes asymptotiques des processus de branchement en environnement aleatoire”, Compt. Rendus Acad. sci., Paris, Ser. 1, 332 (2001), 339-344 | DOI | MR

[4] Afanasyev V. I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Proc. Appl., 93:1 (2001), 87-107 | DOI | MR | Zbl

[5] Huang C., Liu Q., “Convergence in $L^{p}$ and its exponential rate for a branching process in a random environment”, Electr. J. Probab., 19 (2014), 1-22 | MR

[6] Boinghoff C., “Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions”, Stoch. Proc. Appl., 124 (2014), 3553-3577 | DOI | MR | Zbl

[7] Bansaye V., Boinghoff C., “Small positive values for supercritical branching processes in random environment”, Ann. Inst. H. Poincaré, Probab. Statist., 50:3 (2014), 770-805 | MR | Zbl

[8] Afanasyev V. I., Boinghoff C., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[9] Kersting G., Vatutin V., Discrete time branching processes in random environment, Wiley, London, 2017, 306 pp. | MR | Zbl