Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_3_a0, author = {V. I. Afanasyev}, title = {Weakly supercritical branching process in unfavourable environment}, journal = {Diskretnaya Matematika}, pages = {3--19}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/} }
V. I. Afanasyev. Weakly supercritical branching process in unfavourable environment. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/
[1] Athreya K. B., Karlin S., “Branching processes with random environments II: Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843-1858 | DOI | MR | Zbl
[2] Tanny D., “A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means”, Stoch. Proc. Appl., 28 (1998), 123-139 | DOI | MR
[3] Guivarc'h Y., Liu Q., “Proprietes asymptotiques des processus de branchement en environnement aleatoire”, Compt. Rendus Acad. sci., Paris, Ser. 1, 332 (2001), 339-344 | DOI | MR
[4] Afanasyev V. I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Proc. Appl., 93:1 (2001), 87-107 | DOI | MR | Zbl
[5] Huang C., Liu Q., “Convergence in $L^{p}$ and its exponential rate for a branching process in a random environment”, Electr. J. Probab., 19 (2014), 1-22 | MR
[6] Boinghoff C., “Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions”, Stoch. Proc. Appl., 124 (2014), 3553-3577 | DOI | MR | Zbl
[7] Bansaye V., Boinghoff C., “Small positive values for supercritical branching processes in random environment”, Ann. Inst. H. Poincaré, Probab. Statist., 50:3 (2014), 770-805 | MR | Zbl
[8] Afanasyev V. I., Boinghoff C., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl
[9] Kersting G., Vatutin V., Discrete time branching processes in random environment, Wiley, London, 2017, 306 pp. | MR | Zbl