Weakly supercritical branching process in unfavourable environment
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{Z_{n}\}$ be a weakly supercritical branching process in a random environment, and $\{S_{n}\}$ be its associated random walk. We consider a natural martingale $W_{n}=Z_{n}\exp(-S_{n})$, where $n\geq 0$. We prove two limit theorems for the random process $W_{\lfloor nt\rfloor}$, where $t\in [0,1]$, which is considered either under the condition on the unfavourable environment $\{\max_{1\leq i\leq n}S_{i}\}$ or under the condition on the unfavourable environment $\{S_{n}\leq u\}$, where $u$ is some positive constant.
Keywords: weakly supercritical branching process in a random environment, conditional functional limit theorems
@article{DM_2022_34_3_a0,
     author = {V. I. Afanasyev},
     title = {Weakly supercritical branching process in unfavourable environment},
     journal = {Diskretnaya Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Weakly supercritical branching process in unfavourable environment
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 3
EP  - 19
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/
LA  - ru
ID  - DM_2022_34_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Weakly supercritical branching process in unfavourable environment
%J Diskretnaya Matematika
%D 2022
%P 3-19
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/
%G ru
%F DM_2022_34_3_a0
V. I. Afanasyev. Weakly supercritical branching process in unfavourable environment. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a0/