Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 120-136

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a critical Galton – Watson branching process starting with $N$ particles; the number of offsprings is supposed to have the distribution $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\ldots$ Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with $N$ trees and $n$ non-root vertices as $N,n\to\infty$, $n/N^{\tau}\geq C> 0$.
Keywords: Galton – Watson forest, maximal tree size, limit distribution.
@article{DM_2022_34_2_a9,
     author = {E. V. Khvorostyanskaya},
     title = {Limit theorems for the maximal tree size of a {Galton\,--\,Watson} forest in the critical case},
     journal = {Diskretnaya Matematika},
     pages = {120--136},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/}
}
TY  - JOUR
AU  - E. V. Khvorostyanskaya
TI  - Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 120
EP  - 136
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/
LA  - ru
ID  - DM_2022_34_2_a9
ER  - 
%0 Journal Article
%A E. V. Khvorostyanskaya
%T Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
%J Diskretnaya Matematika
%D 2022
%P 120-136
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/
%G ru
%F DM_2022_34_2_a9
E. V. Khvorostyanskaya. Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 120-136. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/