Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 120-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a critical Galton – Watson branching process starting with $N$ particles; the number of offsprings is supposed to have the distribution $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\ldots$ Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with $N$ trees and $n$ non-root vertices as $N,n\to\infty$, $n/N^{\tau}\geq C> 0$.
Keywords: Galton – Watson forest, maximal tree size, limit distribution.
@article{DM_2022_34_2_a9,
     author = {E. V. Khvorostyanskaya},
     title = {Limit theorems for the maximal tree size of a {Galton\,--\,Watson} forest in the critical case},
     journal = {Diskretnaya Matematika},
     pages = {120--136},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/}
}
TY  - JOUR
AU  - E. V. Khvorostyanskaya
TI  - Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 120
EP  - 136
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/
LA  - ru
ID  - DM_2022_34_2_a9
ER  - 
%0 Journal Article
%A E. V. Khvorostyanskaya
%T Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
%J Diskretnaya Matematika
%D 2022
%P 120-136
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/
%G ru
%F DM_2022_34_2_a9
E. V. Khvorostyanskaya. Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 120-136. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/

[1] Pavlov Yu. L., Sluchainye lesa, KarNTs RAN, Petrozavodsk, 1996, 259 pp.

[2] Cheplyukova I. A., “Vozniknovenie gigantskogo dereva v sluchainom lese”, Diskretnaya matematika, 10:1 (1998), 111–126 | MR | Zbl

[3] Pavlov Yu. L., Cheplyukova I. A., “Predelnye raspredeleniya chisla vershin v sloyakh prosto generiruemogo lesa”, Diskretnaya matematika, 11:1 (1999), 97–112 | MR | Zbl

[4] Myllari T., “Limit distributions for the number of leaves in a random forest”, Adv. Appl. Probab., 34:4 (2002), 904–922 | DOI | MR | Zbl

[5] Kazimirov N. I., Pavlov Yu. L., “Odno zamechanie o lesakh Galtona–Vatsona”, Diskretnaya matematika, 12:1 (2000), 47–59 | MR | Zbl

[6] Bollobas B., “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J. Combin, 1:4 (1980), 311–316 | DOI | MR | Zbl

[7] Hofstad R., Random Graphs and Complex Networks, v. 1, Cambridge University Press, Cambridge, 2017, xvi+321 pp. Vol.2, https://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf | MR | Zbl

[8] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1 (2004), 3–23 | DOI | MR

[9] Pavlov Yu. L., “Maksimalnoe derevo sluchainogo lesa v konfiguratsionnom grafe”, Matematicheskii sbornik, 212:9 (2021), 146–163 | MR | Zbl

[10] Khvorostyanskaya E. V., “O predelnom raspredelenii maksimalnogo ob'ema dereva v lese Galtona–Vatsona”, Trudy KarNTs RAN, 2020, no. 7, 89–97

[11] Khvorostyanskaya E. V., “O predelnom raspredelenii maksimalnogo ob'ema dereva v lese Galtona–Vatsona so stepennym raspredeleniem”, Trudy KarNTs RAN, 2021, no. 6, 64–76

[12] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 208 pp.

[13] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2000, 256 pp.

[14] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 738 pp. | MR

[15] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp. | MR