Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 120-136
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a critical Galton – Watson branching process starting with $N$ particles; the number of offsprings is supposed to have the distribution $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\ldots$ Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with $N$ trees and $n$ non-root vertices as $N,n\to\infty$, $n/N^{\tau}\geq C> 0$.
Keywords:
Galton – Watson forest, maximal tree size, limit distribution.
@article{DM_2022_34_2_a9,
author = {E. V. Khvorostyanskaya},
title = {Limit theorems for the maximal tree size of a {Galton\,--\,Watson} forest in the critical case},
journal = {Diskretnaya Matematika},
pages = {120--136},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/}
}
TY - JOUR AU - E. V. Khvorostyanskaya TI - Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case JO - Diskretnaya Matematika PY - 2022 SP - 120 EP - 136 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/ LA - ru ID - DM_2022_34_2_a9 ER -
E. V. Khvorostyanskaya. Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 120-136. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a9/