@article{DM_2022_34_2_a7,
author = {V. G. Ryabov},
title = {Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues},
journal = {Diskretnaya Matematika},
pages = {83--105},
year = {2022},
volume = {34},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a7/}
}
TY - JOUR AU - V. G. Ryabov TI - Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues JO - Diskretnaya Matematika PY - 2022 SP - 83 EP - 105 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a7/ LA - ru ID - DM_2022_34_2_a7 ER -
V. G. Ryabov. Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 83-105. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a7/
[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl
[2] Ambrosimov A. S., “O priblizhenii funktsii $k$-znachnoi logiki funktsiyami iz zadannoi sistemy”, Fundamentalnaya i prikladnaya matematika, 3:3 (1997), 653–674 | MR | Zbl
[3] Gorshkov S. P., Dvinyaninov A. V., “Nizhnyaya i verkhnyaya otsenki poryadka affinnosti preobrazovanii prostranstv bulevykh vektorov”, Prikladnaya diskretnaya matematika, 2013, no. 2(20), 14–18 | Zbl
[4] Zubkov A. M., Serov A. A., “Otsenka chisla bulevykh funktsii, imeyuschikh affinnye priblizheniya zadannoi tochnosti”, Diskretnaya matematika, 22:4 (2010), 3–19 | Zbl
[5] Ryabov V.G., “O stepeni ogranichenii funktsii q-znachnoi logiki na lineinye mnogoobraziya”, Prikladnaya diskretnaya matematika, 2019, no. 45, 13–25 | Zbl
[6] Ryabov V. G., “O stepeni ogranichenii vektornykh funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Diskretnaya matematika, 32:2 (2020), 61–70
[7] Ryabov V. G., “O priblizhenii ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya affinnymi analogami”, Diskretnaya matematika, 32:4 (2020), 89–102
[8] Ryabov V. G., “Maksimalno nelineinye funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:1 (2021), 47–63 | MR
[9] Ryabov V. G., “Kriterii maksimalnoi nelineinosti funktsii nad konechnym polem”, Diskretnaya matematika, 33:3 (2021), 79–91 | MR
[10] Ryabov V. G., “Nelineinost funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:4 (2021), 110–131 | MR
[11] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematikm, Nauka, M., 1982, 384 pp. | MR
[12] Sidelnikov V. M., “O vzaimnoi korrelyatsii posledovatelnostei”, Problemy kibernetiki, 24 (1971), 15–42 | Zbl
[13] Chabaud F., Vaudenay S., “Links between differential and linear cryptanalysis”, EUROCRYPT 1994, Lect. Notes Comput. Sci., 950, 1995, 356–365 | DOI | MR | Zbl
[14] Nyberg K., “On the construction of highly nonlinear permutations”, EUROCRYPT 1992, Lect. Notes Comput. Sci., 658, 1993, 92–98 | DOI | MR | Zbl