Short complete diagnostic tests for circuits with two additional inputs in some basis
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 67-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any Boolean function in $n$ variables can be modeled by a testable Boolean circuit with two additional inputs in the basis “conjunction, oblique conjunction, disjunction, negation” so that the circuit admits a complete diagnostic test of the length at most $2n+3$ with respect to stuck-at faults of the type $1$ at gate outputs.
Keywords: Boolean circuit, stuck-at fault, complete diagnostic test, Boolean function.
@article{DM_2022_34_2_a6,
     author = {K. A. Popkov},
     title = {Short complete diagnostic tests for circuits with two additional inputs in some basis},
     journal = {Diskretnaya Matematika},
     pages = {67--82},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a6/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short complete diagnostic tests for circuits with two additional inputs in some basis
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 67
EP  - 82
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a6/
LA  - ru
ID  - DM_2022_34_2_a6
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short complete diagnostic tests for circuits with two additional inputs in some basis
%J Diskretnaya Matematika
%D 2022
%P 67-82
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_2_a6/
%G ru
%F DM_2022_34_2_a6
K. A. Popkov. Short complete diagnostic tests for circuits with two additional inputs in some basis. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 67-82. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a6/

[1] Yablonskii S. V., “Nadezhnost i kontrol upravlyayuschikh sistem”, Materialy Vsesoyuznogo seminara po diskret. matem. i ee prilozheniyam, Izd-vo MGU, M., 1986, 7–12

[2] Yablonskii S. V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, no. 1, Nauka, M., 1988, 5–25

[3] Redkin N. P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992, 192 pp.

[4] Popkov K. A., “Nizhnie otsenki dlin polnykh diagnosticheskikh testov dlya skhem i vkhodov skhem”, Prikladnaya diskretnaya matematika, 2016, no. 4(34), 65–73 | Zbl

[5] Redkin N. P., “K voprosu o dline diagnosticheskikh testov dlya skhem”, Matematicheskie zametki, 102:4 (2017), 624–627 | Zbl

[6] Reddy S. M., “Easily testable realizations for logic functions”, IEEE Trans. Comput., C-21:11 (1972), 1183–1188 | DOI | MR

[7] Saluja K. K., Reddy S. M., “Fault detecting test sets for Reed-Muller canonic networks”, IEEE Trans. Comput., C-24:10 (1975), 995–998 | DOI | MR

[8] Hirayama T., Koda G., Nishitani Y., Shimizu K., “Easily testable realization based on single-rail-input OR-AND-EXOR expressions”, IEICE Trans. Inf. Syst., E82-D:9 (1999), 1278–1286

[9] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986, 384 pp. | MR