On the relationship between local affinities of a Boolean function and some types of its degeneracy
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 7-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the relationships between local affinities of a Boolean function and some notions of its degeneracy (differential degeneracy, algebraic degeneracy, affine splittability). New relations connecting the parameters of local affinities and degeneracies are obtained. Relationships between some types of degeneracy of Boolean functions are found.
Keywords: Boolean function, degeneracy, differential degeneracy, algebraic degeneracy, local affinity, affine splittability, linearity index, spectrum of Boolean function, spectrum support.
@article{DM_2022_34_2_a1,
     author = {A. A. Babueva and O. A. Logachev and V. V. Yashchenko},
     title = {On the relationship between local affinities of a {Boolean} function and some types of its degeneracy},
     journal = {Diskretnaya Matematika},
     pages = {7--25},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a1/}
}
TY  - JOUR
AU  - A. A. Babueva
AU  - O. A. Logachev
AU  - V. V. Yashchenko
TI  - On the relationship between local affinities of a Boolean function and some types of its degeneracy
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 7
EP  - 25
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a1/
LA  - ru
ID  - DM_2022_34_2_a1
ER  - 
%0 Journal Article
%A A. A. Babueva
%A O. A. Logachev
%A V. V. Yashchenko
%T On the relationship between local affinities of a Boolean function and some types of its degeneracy
%J Diskretnaya Matematika
%D 2022
%P 7-25
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_2_a1/
%G ru
%F DM_2022_34_2_a1
A. A. Babueva; O. A. Logachev; V. V. Yashchenko. On the relationship between local affinities of a Boolean function and some types of its degeneracy. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 7-25. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a1/

[1] Alekseev E.K., “O nekotorykh merakh nelineinosti bulevykh funktsii”, Prikl. diskr. matem., 2:12 (2011), 5–16 | Zbl

[2] Alekseev E. K., Kuschinskaya L. A., “Obobschenie odnogo metoda vosstanovleniya klyucha filtruyuschego generatora”, Diskretnaya matematika, 29:4 (2017), 3–27

[3] Alferov A.P., Zubov A.Yu., Kuzmin A.S., Cheremushkin A.V., Osnovy kriptografii, Gelios, M., 2001, 480 pp.

[4] Gorshkov S.P., Tarasov A.V., “O maksimalnykh gruppakh invariantnykh preobrazovanii multiaffinnykh, biyunktivnykh, slabo polozhitelnykh i slabo otritsatelnykh bulevykh funktsii”, Diskretnaya matematika, 21:2 (2009), 94–101 | Zbl

[5] Kolomeets N.A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikl. diskr. matem., 2014, no. 3, 28–39 | Zbl

[6] Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, LENAND, M., 2015, 573 pp.

[7] Logachev O.A., Salnikov A.A., Yaschenko V.V., “Nevyrozhdennaya normalnaya forma bulevykh funktsii”, Dokl. Akademii nauk, 373:2 (2000), 164–167 | MR | Zbl

[8] Logachev O.A., Salnikov A.A., Yaschenko V.V., “Nekotorye kharakteristiki «nelineinosti» gruppovykh otobrazhenii”, Diskretn. analiz i issled. oper., ser. 1, 8:1 (2001), 40–54 | MR | Zbl

[9] Logachev O.A., Fedorov S.N., Yaschenko V.V., “O nekotorykh invariantakh deistviya $GA(n, 2)$ na mnozhestve bulevykh funktsii”, Diskretnaya matematika, 33:2 (2021), 66–85

[10] Bernasconi A., Codenotti B., “Spectral analysis of Boolean functions as a graph eigenvalue problem”, IEEE Trans. Comput., 48:3 (1999), 345–351, IEEE | DOI | MR | Zbl

[11] Boyar J., Find M.G., “Constructive relationships between algebraic thickness and normality”, Int. Symp. Fundam. Comput. Theory, Lect. Notes Comput. Sci., 9210, 2015, 106–117 | DOI | MR | Zbl

[12] Boyar J., Find M.G., Peralta R., “On various nonlinearity measures for Boolean functions”, Cryptogr. and Commun., 8:3 (2016), 313–330 | DOI | MR | Zbl

[13] Canteaut A., Daum M., Dobbertin H., Leandr G., “Finding normal bent-functions”, Discr. Appl. Math., 154 (2006), 202–218 | DOI | MR | Zbl

[14] Carlet C., “On the degree, nonlinearity, algebraic thickness, and nonnormality of Boolean functions, with developments on symmetric functions”, IEEE Trans. Inf. Theory, 50:9 (2004), 2178–2185, IEEE | DOI | MR | Zbl

[15] Carlet C., Charpin P., “Cubic Boolean functions with highest resiliency”, IEEE Trans. Inf. Theory, 51:2 (2005), 562–571, IEEE | DOI | MR | Zbl

[16] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, 2020, 574 pp. | Zbl

[17] Dawson E., Wu C. K., “Construction of correlation immune Boolean functions”, Australasian J. Combinatorics, 21 (1997), 170–180 | MR

[18] Dickson L. E., Linear groups, B. G. Teubner, Leipzig, 1901 | Zbl

[19] Lechner R. J., “Harmonic analysis of switching functions”, Developments in switching theory, Academic Press, 1971, 121–228 | DOI | MR

[20] Matsui M., “Linear cryptanalysis method for DES cipher”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1993, 386–397 | DOI

[21] Rothaus O. S., “On bent functions”, J. Comb. Theory, Ser. A., 20:3 (1976), 300–305 | DOI | MR | Zbl

[22] Sanyal S., Sub-linear upper bounds on Fourier dimension of Boolean functions in terms of Fourier sparsity, 2014, arXiv: 1407.3500 | MR

[23] Shannon C. E., “The synthesis of two-terminal switching circuits”, The Bell System Technical J., 28:1 (1949), 59–98 | DOI | MR

[24] Siegenthaler T., “Decrypting a class of stream ciphers using ciphertext only”, IEEE Trans. on computers, 34:1 (1985), 81–85 | DOI