Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 103-125
Voir la notice de l'article provenant de la source Math-Net.Ru
The class of nonabelian 2-groups $H$ with cyclic subgroup of index 2 includes the dihedral group,
the generalized quaternion group,
the semidihedral group, and the modular maximal cyclic group, which have many various applications in
discrete mathematics and cryptography.
We introduce piecewise-quasiaffine transformations on a group $H$, and
put forward criteria of their bijectivity.
For the generalized group of quaternions of order $2^m$, we obtain a complete classification
of orthomorphisms, complete transformations, and their left analogues in the class of piecewise-quasiaffine transformations
under consideration. We also evaluate their cardinalities.
Keywords:
orthomorphism, complete transformation, dihedral group, generalized quaternion group,
semidihedral group, modular maximal cyclic group.
@article{DM_2022_34_1_a7,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions},
journal = {Diskretnaya Matematika},
pages = {103--125},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a7/}
}
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions JO - Diskretnaya Matematika PY - 2022 SP - 103 EP - 125 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_1_a7/ LA - ru ID - DM_2022_34_1_a7 ER -
B. A. Pogorelov; M. A. Pudovkina. Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 103-125. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a7/