Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_1_a4, author = {S. S. Marchenkov}, title = {On the equality problem of finitely generated classes of exponentially-polynomial functions}, journal = {Diskretnaya Matematika}, pages = {64--75}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a4/} }
S. S. Marchenkov. On the equality problem of finitely generated classes of exponentially-polynomial functions. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 64-75. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a4/
[1] Darsaliya V. Sh., “Usloviya polnoty dlya polinomov s naturalnymi, tselymi i ratsionalnymi koeffitsientami”, Fundam. i prikl. matem., 2:2 (1996), 365—374 | MR | Zbl
[2] Mamontov A. I., Meshchaninov D. G., “The completeness problem in the function algebra of linear integer-coefficient polynomials”, Discrete Math. Appl., 20:5-6 (2010), 621–641 | DOI | MR | Zbl
[3] Mamontov A. I., Meshchaninov D. G., “The algorithm for completeness recognizing in function algebra $L(\mathbb Z)$”, Discrete Math. Appl., 24:1 (2014), 21–28 | DOI | MR | MR | Zbl
[4] Marchenkov S. S., Funktsionalnye sistemy s operatsiei superpozitsii, Fizmatlit, M., 2004, 104 pp. | MR
[5] Marchenkov S. S., Predstavlenie funktsii superpozitsiyami, KomKniga, M., 2010, 192 pp.
[6] Marchenkov S. S., Izbrannye glavy diskretnoi matematiki, MAKS Press, M., 2016, 133 pp.
[7] Marchenkov S. S., “Completeness criterion in class of exponential-polynomial functions”, Moscow Univ. Comput. Math. and Cybern., 44:2 (2020), 87–94 | DOI | MR | Zbl
[8] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Sbornik statei po matematicheskoi logike i ee prilozheniyam k nekotorym voprosam kibernetiki, Tr. MIAN SSSR, 51, Izd-vo AN SSSR, M., 1958, 5–142
[9] Rosenberg I. G., “Über die funktionale Vollständigkeit in den mehrwertigen Logiken”, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd, 80 (1970), 3–93 | MR