Methods of linear and differential relations in cryptography
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 36-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies mappings $F$ of binary vector spaces of large dimensions. The mappings are assumed to be represented by deep branching superpositions of local non-linear mappings of low-dimensional spaces. We propose and investigate the methods for construction of probabilistic linear and differential relations connecting the arguments and the values of a mapping $F$. Relation selection is based on optimization not the exact probability of satisfying these relations, but some approximation of it since it is easier to estimate. We prove theorems on exact values of the probability of satisfying the relations obtained, identify the shortcomings and features of the proposed approach to the relation construction and illustrate them by a number of examples. We discuss the role of the developed theory for cryptographic synthesis.
Keywords: theoretical cryptography, functional scheme, linear medium, degree of diffusion of cryptographic transforms, probabilistic relations.
@article{DM_2022_34_1_a3,
     author = {F. M. Malyshev},
     title = {Methods of linear and differential relations in cryptography},
     journal = {Diskretnaya Matematika},
     pages = {36--63},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a3/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Methods of linear and differential relations in cryptography
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 36
EP  - 63
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_1_a3/
LA  - ru
ID  - DM_2022_34_1_a3
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Methods of linear and differential relations in cryptography
%J Diskretnaya Matematika
%D 2022
%P 36-63
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_1_a3/
%G ru
%F DM_2022_34_1_a3
F. M. Malyshev. Methods of linear and differential relations in cryptography. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 36-63. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a3/

[1] Erokhin A. V., Malyshev F. M., Trishin A. E., “Mnogomernyi lineinyi metod i pokazateli rasseivaniya lineinoi sredy shifrpreobrazovanii”, Matematicheskie voprosy kriptografii, 8:4 (2017), 29–62 | Zbl

[2] Malyshev F. M., “Dvoistvennost raznostnogo i lineinogo metodov v kriptografii”, Matematicheskie voprosy kriptografii, 5:3 (2014), 29–74

[3] Malyshev F. M., “Ob affinnoi klassifikatsii podstanovok na prostranstve $GF(2)^3$”, Diskretnaya matematika, 30:3 (2018), 77–87

[4] Malyshev F. M., “Raznostnye kharakteristiki slozhenii elementov $GF(2)^n$ po mod 2 i po mod $2^n$”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Mater. XVI mezhdunar. konf. (TGPU im. L. N. Tolstogo, Tula), 2019, 175-179

[5] Malyshev F. M., “Veroyatnostnye kharakteristiki raznostnykh i lineinykh sootnoshenii dlya neodnorodnoi lineinoi sredy”, Matematicheskie voprosy kriptografii, 10:1 (2019), 41–72 | Zbl

[6] Malyshev F. M., “Semeistva podstanovok na prostranstve $GF(2)^N$, zadavaemye funktsionalnymi skhemami”, Matematicheskie voprosy kriptografii, 10:3 (2019), 81–87 | Zbl

[7] Malyshev F. M., “Raznostnye kharakteristiki osnovnykh operatsii $ARX$-shifrov”, Matematicheskie voprosy kriptografii, 11:4 (2020), 97–105 | MR | Zbl

[8] Malyshev F. M., Trifonov D. I., “Rasseivayuschie svoistva XSLP-shifrov”, Matematicheskie voprosy kriptografii, 7:3 (2016), 47–60 | MR | Zbl

[9] Malyshev F. M., Trishin A. E., “Lineinyi i raznostnyi metody v kriptografii (drugoi vzglyad)”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Mater. XV mezhdunar. konf. (TGPU im. L. N. Tolstogo, Tula), 2018, 42–45

[10] Messi Dzh. L., “Vvedenie v sovremennuyu kriptologiyu”, TIIER, 76:5 (1988), 24–42

[11] Fedchenko V. A., “Pokazateli rasseivaniya lineinoi sredy AES-podobnykh algoritmov shifrovaniya”, Matematicheskie voprosy kriptografii, 8:3 (2017), 109–126 | MR | Zbl

[12] Fedchenko V. A., “Minimalnye soglasovannye sistemy lokalnykh veroyatnostnykh sootnoshenii v AES-podobnykh algoritmakh shifrovaniya”, Matematicheskie voprosy kriptografii, 9:3 (2018), 127–142 | MR | Zbl

[13] Fedchenko V. A., “O lineinom i raznostnom kriptoanalize AES-podobnykh algoritmov shifrovaniya”, Matematicheskie voprosy kriptografii, 11:3 (2020), 101–120 | MR | Zbl

[14] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1967, 498 pp. | MR

[15] Shennon K., Raboty po teorii informatsii i kibernetike, IL, M., 1963, 829 pp.

[16] Daemen J., Govaerts R., Vandewalle J., “Correlation matrices”, Fast Software Encryption, FSE 1994, Lect. Notes Comput. Sci., 1008, Springer, Berlin, Heidelberg, 1995, 275–285 | DOI | Zbl

[17] Daemen J., Rijmen V, The Design of Rijndael: AES — The Advanced Encryption Standard, Springer, Berlin, Heidelberg, 2002, 238 pp. | MR | Zbl

[18] Malyshev F. M., Trishin A. E., “Linear and differential cryptanalysis: Another viewpoint”, Matematicheskie voprosy kriptografii, 11:2 (2020), 83–98 | MR | Zbl