The site-perimeter of compositions
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Compositions of $n$ are finite sequences of positive integers $(\sigma_i)_{i=1}^k$ such that \[\sigma_1+\sigma_2+\cdots +\sigma_k=n.\] We represent a composition of $n$ as a bargraph with area $n$ such that the height of the $i$-th column of the bargraph equals the size of the $i$-th part of the composition. We consider the site-perimeter which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the total site-perimeter of compositions is obtained. In addition, we rederive the average site-perimeter of a composition by direct counting. Finally we determine the average site-perimeter of a bargraph with a given semi-perimeter.
Keywords: bargraphs, site-perimeter, compositions, generating functions, asymptotics.
@article{DM_2022_34_1_a0,
     author = {A. Blecher and Ch. Brennan and A. Knopfmacher},
     title = {The site-perimeter of compositions},
     journal = {Diskretnaya Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/}
}
TY  - JOUR
AU  - A. Blecher
AU  - Ch. Brennan
AU  - A. Knopfmacher
TI  - The site-perimeter of compositions
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 3
EP  - 19
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/
LA  - ru
ID  - DM_2022_34_1_a0
ER  - 
%0 Journal Article
%A A. Blecher
%A Ch. Brennan
%A A. Knopfmacher
%T The site-perimeter of compositions
%J Diskretnaya Matematika
%D 2022
%P 3-19
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/
%G ru
%F DM_2022_34_1_a0
A. Blecher; Ch. Brennan; A. Knopfmacher. The site-perimeter of compositions. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/

[1] Bacher A., “Average site perimeter of directed animals on the two-dimensional lattices”, Discrete Mathematics, 312:5 (2012), 1038–1058 | DOI | MR | Zbl

[2] Blecher A., Brennan C., Knopfmacher A., “Site-perimeter in permutations”, Utilitas Math., 99 (2016), 19–32 | MR | Zbl

[3] Blecher A., Brennan C., Knopfmacher A., Mansour T., “Site-perimeter in words”, Trans. on Combinatorics, 6:2 (2017), 37–48 | MR | Zbl

[4] Bousquet-Mélou M., Rechnitzer A., “The site-perimeter of bargraphs”, Adv. Appl. Math., 31 (2003), 86–112 | DOI | MR | Zbl

[5] Delest M., Gouyou-Beauchamps D., Vauquelin B., “Enumeration of parallelogram polyominoes with given bond and site perimeter”, Graphs and Combinatorics, 3:1 (1987), 325–339 | DOI | MR | Zbl

[6] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009, 810 pp. | MR | Zbl

[7] Fülep G., Sieben N., “Polyiamonds and polyhexes with minimum site-perimeter and achievement games”, Electr. J. Combinatorics, 17 (2010), R65 | DOI | MR | Zbl

[8] Sieben N., “Polyominoes with minimum site-perimeter and full set achievement games”, Eur. J. Combinatorics, 29:1 (2008), 108–117 | DOI | MR | Zbl