Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_1_a0, author = {A. Blecher and Ch. Brennan and A. Knopfmacher}, title = {The site-perimeter of compositions}, journal = {Diskretnaya Matematika}, pages = {3--19}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/} }
A. Blecher; Ch. Brennan; A. Knopfmacher. The site-perimeter of compositions. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/
[1] Bacher A., “Average site perimeter of directed animals on the two-dimensional lattices”, Discrete Mathematics, 312:5 (2012), 1038–1058 | DOI | MR | Zbl
[2] Blecher A., Brennan C., Knopfmacher A., “Site-perimeter in permutations”, Utilitas Math., 99 (2016), 19–32 | MR | Zbl
[3] Blecher A., Brennan C., Knopfmacher A., Mansour T., “Site-perimeter in words”, Trans. on Combinatorics, 6:2 (2017), 37–48 | MR | Zbl
[4] Bousquet-Mélou M., Rechnitzer A., “The site-perimeter of bargraphs”, Adv. Appl. Math., 31 (2003), 86–112 | DOI | MR | Zbl
[5] Delest M., Gouyou-Beauchamps D., Vauquelin B., “Enumeration of parallelogram polyominoes with given bond and site perimeter”, Graphs and Combinatorics, 3:1 (1987), 325–339 | DOI | MR | Zbl
[6] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009, 810 pp. | MR | Zbl
[7] Fülep G., Sieben N., “Polyiamonds and polyhexes with minimum site-perimeter and achievement games”, Electr. J. Combinatorics, 17 (2010), R65 | DOI | MR | Zbl
[8] Sieben N., “Polyominoes with minimum site-perimeter and full set achievement games”, Eur. J. Combinatorics, 29:1 (2008), 108–117 | DOI | MR | Zbl