The site-perimeter of compositions
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Compositions of $n$ are finite sequences of positive integers $(\sigma_i)_{i=1}^k$ such that \[\sigma_1+\sigma_2+\cdots +\sigma_k=n.\] We represent a composition of $n$ as a bargraph with area $n$ such that the height of the $i$-th column of the bargraph equals the size of the $i$-th part of the composition. We consider the site-perimeter which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the total site-perimeter of compositions is obtained. In addition, we rederive the average site-perimeter of a composition by direct counting. Finally we determine the average site-perimeter of a bargraph with a given semi-perimeter.
Keywords: bargraphs, site-perimeter, compositions, generating functions, asymptotics.
@article{DM_2022_34_1_a0,
     author = {A. Blecher and Ch. Brennan and A. Knopfmacher},
     title = {The site-perimeter of compositions},
     journal = {Diskretnaya Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/}
}
TY  - JOUR
AU  - A. Blecher
AU  - Ch. Brennan
AU  - A. Knopfmacher
TI  - The site-perimeter of compositions
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 3
EP  - 19
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/
LA  - ru
ID  - DM_2022_34_1_a0
ER  - 
%0 Journal Article
%A A. Blecher
%A Ch. Brennan
%A A. Knopfmacher
%T The site-perimeter of compositions
%J Diskretnaya Matematika
%D 2022
%P 3-19
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/
%G ru
%F DM_2022_34_1_a0
A. Blecher; Ch. Brennan; A. Knopfmacher. The site-perimeter of compositions. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a0/