Local limit theorem for the number of empty cells in a scheme of random equiprobable allocations
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 83-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical scheme of random equiprobable allocations of $n$ particles into $N$ cells is considered. We find an asymptotic formula for the probability that the number of empty cells is equal to $k$ under the condition that $n, N \to \infty$ in such a way that $n/(N - k)$ is bounded and separated from 1 from below.
Keywords: random equiprobable allocations, number of empty cells, local limit theorems.
@article{DM_2021_33_4_a7,
     author = {O. P. Orlov},
     title = {Local limit theorem for the number of empty cells in a scheme of random equiprobable allocations},
     journal = {Diskretnaya Matematika},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a7/}
}
TY  - JOUR
AU  - O. P. Orlov
TI  - Local limit theorem for the number of empty cells in a scheme of random equiprobable allocations
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 83
EP  - 93
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a7/
LA  - ru
ID  - DM_2021_33_4_a7
ER  - 
%0 Journal Article
%A O. P. Orlov
%T Local limit theorem for the number of empty cells in a scheme of random equiprobable allocations
%J Diskretnaya Matematika
%D 2021
%P 83-93
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a7/
%G ru
%F DM_2021_33_4_a7
O. P. Orlov. Local limit theorem for the number of empty cells in a scheme of random equiprobable allocations. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 83-93. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a7/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976, 223 pp.

[2] Dupuis, P., Zhang, J., Whiting, P., “Refined large deviation asymptotics for the classical occupancy problem”, Methodol. Comput. Appl. Probab., 8 (2006), 467–496 | DOI | Zbl

[3] Kolchin, V. F., “Skorost priblizheniya k predelnym raspredeleniyam v klassicheskoi zadache o drobinkakh”, Teoriya veroyatn. i ee primen., 11:1 (1966), 144–156 | Zbl

[4] Kolchin, V. F., “Odin sluchai ravnomernykh lokalnykh predelnykh teorem s peremennoi reshetkoi v klassicheskoi zadache o drobinkakh”, Teoriya veroyatn. i ee primen., 12:1 (1967), 62–72

[5] Kramer, G., “Ob odnoi novoi predelnoi teoreme teorii veroyatnostei”, Uspekhi matem. nauk, 10 (1944), 166–178

[6] Petrov, V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 287–298 | Zbl

[7] Gnedenko, B. V., Kolmogorov, A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, GITTL, M., 1949, 264 pp.

[8] Gnedenko, B. V., “O lokalnoi predelnoi teoreme teorii veroyatnostei”, Uspekhi matem. nauk, 3:3 (1948), 187–194 | Zbl