Keywords: shift-composition operation, skew polynomials, finite fields, Galois ring.
@article{DM_2021_33_4_a6,
author = {V. I. Nozdrunov},
title = {Decomposition of polynomials using the shift-composition operation},
journal = {Diskretnaya Matematika},
pages = {68--82},
year = {2021},
volume = {33},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a6/}
}
V. I. Nozdrunov. Decomposition of polynomials using the shift-composition operation. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 68-82. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a6/
[1] Solodovnikov V. I., “Homomorphisms of shift registers into linear automata”, Discrete Math. Appl., 18:4 (2008), 413–425 | DOI | Zbl
[2] Solodovnikov V. I., “Homomorphisms of binary shift registers”, Discrete Math. Appl., 15:2 (2005), 179–193 | DOI | Zbl
[3] Shirshov A. I., “O svobodnykh koltsakh Li”, Matematicheskii sbornik, 45(87):2 (1958), 113–122 | Zbl
[4] Skornyakov, L. A., Elementy obschei algebry, Nauka, Moskva, 1983, 272 pp.
[5] Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ. Inc., 1983, 755 pp. | Zbl
[6] McDonald B. R., Finite Rings With Identity, Marcel Dekker Inc., New York, 1974, 429 pp. | Zbl
[7] Ore O., “Theory of non-commutative polynomials”, Ann. Math., 34:3 (1933), 480–508 | DOI | Zbl
[8] Cohn P. M., Free Rings and Their Relations, Academic Press, London, 1985, 608 pp. | Zbl
[9] Jacobson N., The Theory of Rings, Amer. Math. Soc., New York, 1943, 150 pp. | Zbl