On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 61-67
Voir la notice de l'article provenant de la source Math-Net.Ru
There exist well-known distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph. An example is given by the Johnson graph $J(8,3)$ with the intersection array $\{15,8,3;1,4,9\}$. The paper is concerned with the problem of the existence of distance-regular graphs $\Gamma$ with the intersection arrays $\{78,50,9;1,15,60\}$ and $\{174,110,18;1,30,132\}$ for which $\Gamma_3$ is a triangle-free graph.
Keywords:
distance-regular graph, triangle-free graph, triple intersection numbers.
@article{DM_2021_33_4_a5,
author = {A. A. Makhnev and Venbin Guo},
title = {On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph},
journal = {Diskretnaya Matematika},
pages = {61--67},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/}
}
TY - JOUR AU - A. A. Makhnev AU - Venbin Guo TI - On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph JO - Diskretnaya Matematika PY - 2021 SP - 61 EP - 67 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/ LA - ru ID - DM_2021_33_4_a5 ER -
A. A. Makhnev; Venbin Guo. On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/