Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_4_a5, author = {A. A. Makhnev and Venbin Guo}, title = {On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph}, journal = {Diskretnaya Matematika}, pages = {61--67}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/} }
TY - JOUR AU - A. A. Makhnev AU - Venbin Guo TI - On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph JO - Diskretnaya Matematika PY - 2021 SP - 61 EP - 67 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/ LA - ru ID - DM_2021_33_4_a5 ER -
A. A. Makhnev; Venbin Guo. On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer–Verlag, Berlin Heidelberg New York, 1989 | Zbl
[2] Belousov I.N., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Siberian Electr. Math. Reports, 15 (2018), 1506–1512 | Zbl
[3] Makhnev A.A., Isakova M.M., Nirova M.S., “Distance-regular graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Siberian Electr. Math. Reports, 16 (2019), 1254–1259 | Zbl
[4] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Ser. A, 115 (2008), 1086–1095 | DOI | Zbl
[5] Gavrilyuk A., Koolen J., “A characterization of the graphs of bilinear $d\times d$-forms over $F_2$”, Combinatorica, 39:2 (2019), 289–321 | DOI | Zbl