On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 61-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

There exist well-known distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph. An example is given by the Johnson graph $J(8,3)$ with the intersection array $\{15,8,3;1,4,9\}$. The paper is concerned with the problem of the existence of distance-regular graphs $\Gamma$ with the intersection arrays $\{78,50,9;1,15,60\}$ and $\{174,110,18;1,30,132\}$ for which $\Gamma_3$ is a triangle-free graph.
Keywords: distance-regular graph, triangle-free graph, triple intersection numbers.
@article{DM_2021_33_4_a5,
     author = {A. A. Makhnev and Venbin Guo},
     title = {On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph},
     journal = {Diskretnaya Matematika},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - Venbin Guo
TI  - On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 61
EP  - 67
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/
LA  - ru
ID  - DM_2021_33_4_a5
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A Venbin Guo
%T On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph
%J Diskretnaya Matematika
%D 2021
%P 61-67
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/
%G ru
%F DM_2021_33_4_a5
A. A. Makhnev; Venbin Guo. On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a5/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer–Verlag, Berlin Heidelberg New York, 1989 | Zbl

[2] Belousov I.N., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Siberian Electr. Math. Reports, 15 (2018), 1506–1512 | Zbl

[3] Makhnev A.A., Isakova M.M., Nirova M.S., “Distance-regular graphs with intersection arrays $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist”, Siberian Electr. Math. Reports, 16 (2019), 1254–1259 | Zbl

[4] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Ser. A, 115 (2008), 1086–1095 | DOI | Zbl

[5] Gavrilyuk A., Koolen J., “A characterization of the graphs of bilinear $d\times d$-forms over $F_2$”, Combinatorica, 39:2 (2019), 289–321 | DOI | Zbl