On implementation of some systems of elementary conjunctions in the class of separating contact circuits
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 47-60

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the system of elementary conjunctions $\Omega_{n,2^k} = {K_0,\ldots,K_{2^{k} -1}}$ such that each conjunction depends essentially on $n$ variables and corresponds to some codeword of a linear $(n, k)$-code can be implemented by a separating contact circuit of complexity at most $2^{k+1} + 4k(n - k) - 2$. We also show that if a contact $(1, 2^k)$-terminal network is separating and implements the system of elementary conjunctions $\Omega_{n,2^k}$, then the number of contacts in it is at least $2^{k+1} - 2$.
Keywords: elementary conjunction, contact circuits, separating circuits, complexity of circuits.
@article{DM_2021_33_4_a4,
     author = {E. G. Krasulina},
     title = {On implementation of some systems of elementary conjunctions in the class of separating contact circuits},
     journal = {Diskretnaya Matematika},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a4/}
}
TY  - JOUR
AU  - E. G. Krasulina
TI  - On implementation of some systems of elementary conjunctions in the class of separating contact circuits
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 47
EP  - 60
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a4/
LA  - ru
ID  - DM_2021_33_4_a4
ER  - 
%0 Journal Article
%A E. G. Krasulina
%T On implementation of some systems of elementary conjunctions in the class of separating contact circuits
%J Diskretnaya Matematika
%D 2021
%P 47-60
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a4/
%G ru
%F DM_2021_33_4_a4
E. G. Krasulina. On implementation of some systems of elementary conjunctions in the class of separating contact circuits. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 47-60. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a4/