On the concentration of the independence numbers of random hypergraphs
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 32-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of general independence numbers of random hypergraphs for the binomial model is studied. We prove that for some types of parameter variations the distribution of independence numbers is concentrated on two neighboring values.
Keywords: random hypergraph, independence number, second moment method.
@article{DM_2021_33_4_a3,
     author = {I. O. Denisov and D. A. Shabanov},
     title = {On the concentration of the independence numbers of random hypergraphs},
     journal = {Diskretnaya Matematika},
     pages = {32--46},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a3/}
}
TY  - JOUR
AU  - I. O. Denisov
AU  - D. A. Shabanov
TI  - On the concentration of the independence numbers of random hypergraphs
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 32
EP  - 46
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a3/
LA  - ru
ID  - DM_2021_33_4_a3
ER  - 
%0 Journal Article
%A I. O. Denisov
%A D. A. Shabanov
%T On the concentration of the independence numbers of random hypergraphs
%J Diskretnaya Matematika
%D 2021
%P 32-46
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a3/
%G ru
%F DM_2021_33_4_a3
I. O. Denisov; D. A. Shabanov. On the concentration of the independence numbers of random hypergraphs. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 32-46. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a3/