Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the branching process $Z_{n} = X_{n, 1} + \dotsb + X_{n, Z_{n-1}}$ in random environments $\boldsymbol\eta$, where $\boldsymbol\eta$ is a sequence of independent identically distributed variables and for fixed $\boldsymbol\eta$ the random variables $X_{i,j}$ are independent and have the geometric distribution. We suppose that the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$ has positive mean $\mu$ and satisfies the right-hand Cramer's condition ${\mathbf E}\exp(h\xi_i) \infty$ for $0$ and some $h^{+}$. Under these assumptions, we find the asymptotic representation for local probabilities ${\mathbf P}\left( Z_n = \lfloor\exp\left(\theta n\right)\rfloor \right)$ for $\theta \in [\theta_1,\theta_2] \subset (\mu;\mu^+)$ and some $\mu^+$.
Keywords: branching processes, random environments, random walks, Cramer's condition, large deviations, local theorems.
@article{DM_2021_33_4_a2,
     author = {K. Yu. Denisov},
     title = {Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants},
     journal = {Diskretnaya Matematika},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/}
}
TY  - JOUR
AU  - K. Yu. Denisov
TI  - Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 19
EP  - 31
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/
LA  - ru
ID  - DM_2021_33_4_a2
ER  - 
%0 Journal Article
%A K. Yu. Denisov
%T Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants
%J Diskretnaya Matematika
%D 2021
%P 19-31
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/
%G ru
%F DM_2021_33_4_a2
K. Yu. Denisov. Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 19-31. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/

[1] Kozlov M. V., “On large deviations of branching processes in a random environment: geometric distribution of descendants”, Discrete Math. Appl., 16:2 (2006), 155–174 | DOI | DOI | MR | Zbl

[2] Kozlov M. V., “On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny”, Theory Probab. Appl., 54:3 (2010), 424–446 | DOI | DOI | MR | Zbl

[3] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Process. Related Fields, 15:3 (2009), 493–524 | Zbl

[4] Buraczewski D., Dyszewski P., Precise large deviation estimates for branching process in random environment, 2017, arXiv: 1706.03874

[5] Shklyaev A.V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. II”, Diskretnaya matematika, 32:1 (2020), 135–156 | DOI | MR

[6] Borovkov A.A., Asimptoticheskii analiz sluchainykh bluzhdanii. Bystroubyvayuschie raspredeleniya priraschenii, Fizmatlit, 2013, 447 pp.

[7] Petrov V.V., “On the probabilities of large deviations for sums of independent random variables”, Theory Probab. Appl., 10:2 (1965), 287–298 | DOI | MR | Zbl

[8] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Prob., 12:1 (1975), 39–46 | DOI | Zbl

[9] Denisov K. Yu., “Asimptotika lokalnykh veroyatnostei nizhnikh uklonenii vetvyaschegosya protsessa v sluchainoi srede pri geometricheskikh raspredeleniyakh chisel potomkov”, Diskretnaya matematika, 32:3 (2020), 24–37 | DOI | MR