Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 19-31
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the branching process $Z_{n} = X_{n, 1} + \dotsb + X_{n, Z_{n-1}}$ in random environments $\boldsymbol\eta$, where $\boldsymbol\eta$ is a sequence of independent identically distributed variables and for fixed $\boldsymbol\eta$ the random variables $X_{i,j}$ are independent and have the geometric distribution. We suppose that the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$ has positive mean $\mu$ and satisfies the right-hand Cramer's condition ${\mathbf E}\exp(h\xi_i) \infty$ for $0$ and some $h^{+}$. Under these assumptions, we find the asymptotic representation for local probabilities ${\mathbf P}\left( Z_n = \lfloor\exp\left(\theta n\right)\rfloor \right)$ for $\theta \in [\theta_1,\theta_2] \subset (\mu;\mu^+)$ and some $\mu^+$.
Keywords:
branching processes, random environments, random walks, Cramer's condition, large deviations, local theorems.
@article{DM_2021_33_4_a2,
author = {K. Yu. Denisov},
title = {Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants},
journal = {Diskretnaya Matematika},
pages = {19--31},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/}
}
TY - JOUR AU - K. Yu. Denisov TI - Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants JO - Diskretnaya Matematika PY - 2021 SP - 19 EP - 31 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/ LA - ru ID - DM_2021_33_4_a2 ER -
%0 Journal Article %A K. Yu. Denisov %T Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants %J Diskretnaya Matematika %D 2021 %P 19-31 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/ %G ru %F DM_2021_33_4_a2
K. Yu. Denisov. Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 19-31. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a2/