Some classes of easily testable circuits in the Zhegalkin basis
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We identify the classes of Boolean functions that may be implemented by easily testable circuits in the Zhegalkin basis for constant type-1 faults on outputs of gates. An upper estimate for the length of a complete fault detection test for three-place functions is obtained.
Keywords: circuit of gates, constant faults, fault detection test, Zhegalkin basis.
@article{DM_2021_33_4_a0,
     author = {Yu. V. Borodina},
     title = {Some classes of easily testable circuits in the {Zhegalkin} basis},
     journal = {Diskretnaya Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a0/}
}
TY  - JOUR
AU  - Yu. V. Borodina
TI  - Some classes of easily testable circuits in the Zhegalkin basis
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 3
EP  - 10
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a0/
LA  - ru
ID  - DM_2021_33_4_a0
ER  - 
%0 Journal Article
%A Yu. V. Borodina
%T Some classes of easily testable circuits in the Zhegalkin basis
%J Diskretnaya Matematika
%D 2021
%P 3-10
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a0/
%G ru
%F DM_2021_33_4_a0
Yu. V. Borodina. Some classes of easily testable circuits in the Zhegalkin basis. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 3-10. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a0/

[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, Moskva, 1984, 138 pp.

[2] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, Moskva, 2002, 384 pp.

[3] Yablonskii S.V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matem. voprosy kibernetiki, 1, 1988, 5–25 | Zbl

[4] Redkin N.P., Nadezhnost i diagnostika skhem, Izd-vo MGU, Moskva, 1992, 192 pp.

[5] Borodina Yu. V., Borodin P. A., “Synthesis of easily testable circuits over the Zhegalkin basis in the case of constant faults of type 0 at outputs of elements”, Discrete Math. Appl., 20:4 (2010), 441–449 | DOI | Zbl

[6] Borodina Yu. V., “Easily testable circuits in Zhegalkin basis in the case of constant faults of type “1” at gate outputs”, Discrete Math. Appl., 30:5 (2020), 303–306 | DOI | Zbl

[7] Romanov D.S., “Metod sinteza neizbytochnykh skhem v bazise Zhegalkina, dopuskayuschikh edinichnye diagnosticheskie testy dliny odin”, Izv. vyssh. uchebn. zaved. Povolzh. region. Fiz.-matem. nauki., 4 (36) (2015), 38–54

[8] Romanov D. S., Romanova E. Yu., “A method of synthesis of irredundant circuits admitting single fault detection tests of constant length”, Discrete Math. Appl., 29:1 (2019), 35–48 | DOI | Zbl

[9] Popkov K.A., “Metod postroeniya legko diagnostiruemykh skhem iz funktsionalnykh elementov otnositelno edinichnykh neispravnostei”, Prikladnaya diskretnaya matematika, 46 (2019), 38–57 | Zbl