On the ``tree'' structure of natural numbers
Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 121-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

With each positive integer one can naturally associate a graph in the form of a tree. This paper is concerned with the average values of the number of edges, the number of leaves and the height of trees corresponding to positive integers not greater than a given boundary.
Keywords: prime divisors, multiplicity of a divisor, Riemann zeta function.
@article{DM_2021_33_3_a8,
     author = {V. V. Iudelevich},
     title = {On the ``tree'' structure of natural numbers},
     journal = {Diskretnaya Matematika},
     pages = {121--141},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_3_a8/}
}
TY  - JOUR
AU  - V. V. Iudelevich
TI  - On the ``tree'' structure of natural numbers
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 121
EP  - 141
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_3_a8/
LA  - ru
ID  - DM_2021_33_3_a8
ER  - 
%0 Journal Article
%A V. V. Iudelevich
%T On the ``tree'' structure of natural numbers
%J Diskretnaya Matematika
%D 2021
%P 121-141
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_3_a8/
%G ru
%F DM_2021_33_3_a8
V. V. Iudelevich. On the ``tree'' structure of natural numbers. Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 121-141. http://geodesic.mathdoc.fr/item/DM_2021_33_3_a8/

[1] Trappman H., Robbins A., 2008 math.eretrandre.org

[2] Karatsuba A. A., Basic Analytic Number Theory, Springer-Verlag, Berlin-Heidelberg, 1993, XIII, 222 pp. | MR | MR | Zbl

[3] Changa M. E., Metody analiticheskoi teorii chisel, R Dynamics, Moskva-Izhevsk, 2013, 226 pp.

[4] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp.; Prachar K., Primzahlverteilung, Springer-Verlag, Berlin Göttingen Heidelberg, 1957 | MR | Zbl

[5] Shubin A. V., “Asymptotic behavior of functions $\Omega(k; n)$ and $\omega(k; n)$ related to the number of prime divisors”, Discrete Math. Appl., 29:2 (2019), 121–129 | DOI | MR | Zbl

[6] Naslund E., “The median largest prime factor”, J. Number Theory, 141 (2014), 109–118 | DOI | MR | Zbl

[7] Ramachandra K., “Some remarks on the mean value of the Riemann zeta function and other Dirichlet series, III”, Ann. Acad. Sci. Fenn., AI Math., 5 (1980), 145–158 | DOI | MR

[8] Ram Murty M., {Problems in Analytic Number Theory}, II, Springer-Verlag, New York, 2008, 506 pp. | MR