Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_3_a5, author = {V. G. Ryabov}, title = {Criteria for maximal nonlinearity of a function over a finite field}, journal = {Diskretnaya Matematika}, pages = {79--91}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/} }
V. G. Ryabov. Criteria for maximal nonlinearity of a function over a finite field. Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 79-91. http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/
[1] Ambrosimov A. S., “Properties of bent functions of $q$-valued logic over finite fields”, Discrete Math. Appl., 4:4 (1994), 341–350 | DOI | MR | Zbl
[2] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10 (2007), 97–122
[3] Ryabov V. G., “O stepeni ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Prikladnaya diskretnaya matematika, 2019, no. 45, 13–25 | Zbl
[4] Ryabov V. G., “O priblizhenii ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya affinnymi analogami”, Diskretnaya matematika, 32:4 (2020), 89–102 | MR
[5] Ryabov V. G., “Maksimalno nelineinye funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:1 (2021), 47–63 | MR
[6] Solodovnikov V. I., “Bent functions from a finite Abelian group into a finite Abelian group”, Discrete Math. Appl., 12:2 (2002), 111–126 | DOI | MR | Zbl
[7] Solodovnikov V. I., “O primarnykh funktsiyakh, minimalno blizkikh k lineinym”, Matematicheskie voprosy kriptografii, 2:4 (2011), 97–108
[8] Carlet C., Ding C., “Highly nonlinear mappings”, J. Complexity, 20:2-3 (2004), 205–244 | DOI | MR | Zbl
[9] Kumar P. V., Scholtz R. A., Welch L. R, “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl
[10] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl