Criteria for maximal nonlinearity of a function over a finite field
Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 79-91

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-place function over a field with $q$ elements is called maximally nonlinear if it has the greatest nonlinearity among all such functions. Criteria and necessary conditions for maximal nonlinearity are obtained, which imply that, for even $n$, the maximally nonlinear functions are bent functions, but, for $q>2$, the known families of bent functions are not maximally nonlinear. For an arbitrary finite field, a relationship between the Hamming distances from a function to all affine mappings and the Fourier spectra of the nontrivial characters of the function are found.
Keywords: finite field, nonlinearity, affine function, bent function, Fourier coefficients.
@article{DM_2021_33_3_a5,
     author = {V. G. Ryabov},
     title = {Criteria for maximal nonlinearity of a function over a finite field},
     journal = {Diskretnaya Matematika},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - Criteria for maximal nonlinearity of a function over a finite field
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 79
EP  - 91
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/
LA  - ru
ID  - DM_2021_33_3_a5
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T Criteria for maximal nonlinearity of a function over a finite field
%J Diskretnaya Matematika
%D 2021
%P 79-91
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/
%G ru
%F DM_2021_33_3_a5
V. G. Ryabov. Criteria for maximal nonlinearity of a function over a finite field. Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 79-91. http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/