Criteria for maximal nonlinearity of a function over a finite field
Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-place function over a field with $q$ elements is called maximally nonlinear if it has the greatest nonlinearity among all such functions. Criteria and necessary conditions for maximal nonlinearity are obtained, which imply that, for even $n$, the maximally nonlinear functions are bent functions, but, for $q>2$, the known families of bent functions are not maximally nonlinear. For an arbitrary finite field, a relationship between the Hamming distances from a function to all affine mappings and the Fourier spectra of the nontrivial characters of the function are found.
Keywords: finite field, nonlinearity, affine function, bent function, Fourier coefficients.
@article{DM_2021_33_3_a5,
     author = {V. G. Ryabov},
     title = {Criteria for maximal nonlinearity of a function over a finite field},
     journal = {Diskretnaya Matematika},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - Criteria for maximal nonlinearity of a function over a finite field
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 79
EP  - 91
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/
LA  - ru
ID  - DM_2021_33_3_a5
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T Criteria for maximal nonlinearity of a function over a finite field
%J Diskretnaya Matematika
%D 2021
%P 79-91
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/
%G ru
%F DM_2021_33_3_a5
V. G. Ryabov. Criteria for maximal nonlinearity of a function over a finite field. Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 79-91. http://geodesic.mathdoc.fr/item/DM_2021_33_3_a5/

[1] Ambrosimov A. S., “Properties of bent functions of $q$-valued logic over finite fields”, Discrete Math. Appl., 4:4 (1994), 341–350 | DOI | MR | Zbl

[2] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10 (2007), 97–122

[3] Ryabov V. G., “O stepeni ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Prikladnaya diskretnaya matematika, 2019, no. 45, 13–25 | Zbl

[4] Ryabov V. G., “O priblizhenii ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya affinnymi analogami”, Diskretnaya matematika, 32:4 (2020), 89–102 | MR

[5] Ryabov V. G., “Maksimalno nelineinye funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:1 (2021), 47–63 | MR

[6] Solodovnikov V. I., “Bent functions from a finite Abelian group into a finite Abelian group”, Discrete Math. Appl., 12:2 (2002), 111–126 | DOI | MR | Zbl

[7] Solodovnikov V. I., “O primarnykh funktsiyakh, minimalno blizkikh k lineinym”, Matematicheskie voprosy kriptografii, 2:4 (2011), 97–108

[8] Carlet C., Ding C., “Highly nonlinear mappings”, J. Complexity, 20:2-3 (2004), 205–244 | DOI | MR | Zbl

[9] Kumar P. V., Scholtz R. A., Welch L. R, “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[10] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl