Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_3_a4, author = {V. G. Mikhailov and N. M. Mezhennaya and A. V. Volgin}, title = {On the asymptotic normality conditions for the number of repetitions in a stationary random sequence}, journal = {Diskretnaya Matematika}, pages = {64--78}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_3_a4/} }
TY - JOUR AU - V. G. Mikhailov AU - N. M. Mezhennaya AU - A. V. Volgin TI - On the asymptotic normality conditions for the number of repetitions in a stationary random sequence JO - Diskretnaya Matematika PY - 2021 SP - 64 EP - 78 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2021_33_3_a4/ LA - ru ID - DM_2021_33_3_a4 ER -
%0 Journal Article %A V. G. Mikhailov %A N. M. Mezhennaya %A A. V. Volgin %T On the asymptotic normality conditions for the number of repetitions in a stationary random sequence %J Diskretnaya Matematika %D 2021 %P 64-78 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2021_33_3_a4/ %G ru %F DM_2021_33_3_a4
V. G. Mikhailov; N. M. Mezhennaya; A. V. Volgin. On the asymptotic normality conditions for the number of repetitions in a stationary random sequence. Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 64-78. http://geodesic.mathdoc.fr/item/DM_2021_33_3_a4/
[9] Borovkov A.A., Teoriya veroyatnostei, «LIBROKOM», Moskva, 2017, 656 pp.
[10] Zubkov A.M., Mikhailov V.G., “Repetitions of $s$-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1979), 269–282 | DOI | MR | MR | Zbl
[11] Zubkov A.M., Mikhailov V.G., “Limit distributions of random variables associated with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 | DOI | MR | Zbl
[12] Ibragimov I. A., Linnik Yu. V., Independent and stationary sequences of random variables, Wolters-Noordhof, Groningen, 1971, 443 pp. | MR | Zbl
[13] Mikhailov V.G., “On a theorem of Janson”, Theory Probab. Appl., 36:1 (1991), 173–176 | DOI | MR | Zbl
[14] Mikhailov V.G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113 | MR
[15] Mikhailov V.G., Shoytov A.M., “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | MR
[16] Mikhailov V.G., Shoitov A.M., “Mnogokratnye povtoreniya dlinnykh tsepochek v tsepi Markova”, Matematicheskie voprosy kriptografii, 6:3 (2015), 117–134 | MR
[17] Tikhomirova M.I., Chistjakov V.P., “On the asymptotic normality of some sums of dependent random variables”, Discrete Math. Appl., 27:2 (2017), 123–129 | DOI | MR | Zbl
[18] Shiryaev A.N., Probability-1, Springer-Verlag, New York, 2016, 486 pp. | MR | Zbl
[19] Stein's method for normal approximation, World Scientific, 2004 | MR
[20] Dehling H., “Limit Theorems for Dependent $U$-statistics”, Lecture Notes in Statistics, 187, 65–86 | DOI | MR | Zbl
[21] Feray V., “Weighted dependency graphs”, Electron. J. Probab., 23:93 (2018) | MR | Zbl
[22] Feray V., “Central limit theorems for patterns in multiset permutations and set partitions”, Ann. Appl. Probab., 3:1 (2020), 287–323 | MR
[23] Yoshihara K., “Limiting behavior of $U$-statistics for stationary absolutely regular process”, Z. Wahrschain. verw. Gebiete, 35 (1976), 235–252 | MR
[24] Janson S., “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 305–312 | DOI | MR | Zbl
[25] Theory of $U$-statistics, Springer, Dordrecht, Netherlands, 1994 | MR
[26] Karlin S, Ost F., “Maximal length of common words among random letter sequences”, Ann. Probab., 16(2) (1988), 535–563 | DOI | MR | Zbl
[27] Mikhailov V. G., Mezhennaya N. M., “Normal aproximation for $U$- and $V$-statistics of a stationary absolutely regular sequence”, Siberian Electr. Math. Rep., 17 (2020), 672–682 | MR | Zbl
[28] Ross N., “Fundamentals of Stein's method”, Probability Surveys, 8 (2011), 210–293 | DOI | MR | Zbl