On Synthesis of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates with Small Number of Additional Inputs
Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DM_2021_33_3_a2,
     author = {D. V. Zakablukov},
     title = {On {Synthesis} of {Reversible} {Circuits} {Consisting} of {NOT,} {CNOT} and {2-CNOT} {Gates} with {Small} {Number} of {Additional} {Inputs}},
     journal = {Diskretnaya Matematika},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_3_a2/}
}
TY  - JOUR
AU  - D. V. Zakablukov
TI  - On Synthesis of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates with Small Number of Additional Inputs
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 46
EP  - 54
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_3_a2/
LA  - ru
ID  - DM_2021_33_3_a2
ER  - 
%0 Journal Article
%A D. V. Zakablukov
%T On Synthesis of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates with Small Number of Additional Inputs
%J Diskretnaya Matematika
%D 2021
%P 46-54
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_3_a2/
%G ru
%F DM_2021_33_3_a2
D. V. Zakablukov. On Synthesis of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates with Small Number of Additional Inputs. Diskretnaya Matematika, Tome 33 (2021) no. 3, pp. 46-54. http://geodesic.mathdoc.fr/item/DM_2021_33_3_a2/

[1] Shannon C. E., “The synthesis of two-terminal switching circuits”, Bell System Tech. J., 28:8 (1949), 59–98 | DOI | MR

[2] Lupanov O. B., “Ob odnom metode sinteza skhem”, Izv. vuzov. Radiofizika, 1:1 (1958), 23–26

[3] Feynman R., “Quantum mechanical computers”, Optic News, 11:2 (1985), 11–20 | DOI | MR

[4] Toffoli T., “Reversible computing”, Automata, Languages and Programming, Lect. Notes Comput. Sci., 85, 1980, 632–644 | DOI | MR | Zbl

[5] Zakablukov D. V., “Ventilnaya slozhnost obratimykh skhem kak mera slozhnosti chetnykh podstanovok”, Vestnik MGTU im. N. E. Baumana, ser. «Priborostroenie», 1:100 (2015), 67–82

[6] Zakablukov D. V., “O slozhnosti obratimykh skhem, sostoyaschikh iz funktsionalnykh elementov NOT, CNOT i 2-CNOT”, Diskretnaya matematika, 28:2 (2016), 12–26 ; Zakablukov D. V., “On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates”, Discrete Math. Appl., 27:1 (2017), 57–67 | DOI | MR | Zbl

[7] Karpova N. A., “O vychisleniyakh s ogranichennoi pamyatyu”, Matem. voprosy kibernetiki, no. 2, Nauka, M., 1989, 131–144

[8] Zakablukov D. V., “O zavisimosti slozhnosti i glubiny obratimykh skhem, sostoyaschikh iz funktsionalnykh elementov NOT, CNOT i 2-CNOT, ot kolichestva dopolnitelnykh vkhodov”, Diskretnaya matematika, 32:1 (2020), 8–26 ; Zakablukov D. V., “On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs”, Discrete Math. Appl., 31:1 (2021), 61–75 | MR | DOI | Zbl

[9] Shende V. V., Prasad A. K., Markov I. L., Hayes J. P., “Synthesis of reversible logic circuits”, IEEE Trans. Computer-Aided Des. Integr. Circuits Systems, 22:6 (2006), 710–722 | DOI

[10] Shende V. V., Prasad A. K., Markov I. L., Hayes J. P., “Synthesis of reversible logic circuits”, IEEE Trans. Computer-Aided Des. Integr. Circuits Systems, 22:6 (2006), 710–722 | DOI