The limit joint distributions of statistics of four tests of the NIST package
Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 141-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

For sequences of independent random variables having a Bernoulli distribution with parameter $p$ the limit joint distribution of statistics of four tests of the NIST statistical package («Monobit Test», «Frequency Test within a Block», «Runs Test» and a generalization of «Non-overlapping Template Matching Test») is obtained. Conditions of asymptotic uncorrelatedness and/or asymptotic independence of these statistics are given.
Keywords: joint distribution of statistics, NIST package, «Monobit Test», «Frequency Test within a Block», «Non-overlapping Template Matching Test», «Runs Test», asymptotically independent statistics, asymptotically uncorrelated statistics.
@article{DM_2021_33_2_a9,
     author = {M. P. Savelov},
     title = {The limit joint distributions of statistics of four tests of the {NIST} package},
     journal = {Diskretnaya Matematika},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a9/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - The limit joint distributions of statistics of four tests of the NIST package
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 141
EP  - 154
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a9/
LA  - ru
ID  - DM_2021_33_2_a9
ER  - 
%0 Journal Article
%A M. P. Savelov
%T The limit joint distributions of statistics of four tests of the NIST package
%J Diskretnaya Matematika
%D 2021
%P 141-154
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_2_a9/
%G ru
%F DM_2021_33_2_a9
M. P. Savelov. The limit joint distributions of statistics of four tests of the NIST package. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 141-154. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a9/

[1] Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Vangel M., Banks D., Heckert A., Dray J., Vo S.,, A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications, NIST Special Publication 800-22 Revision 1a, ed. L. E. Bassham III, NIST, 27 April 2010

[2] Serov A. A., “Formuly dlya chisel posledovatelnostei, soderzhaschikh zadannyi shablon zadannoe chislo raz”, Diskretnaya matematika, 32:4 (2020), 120–136 | MR

[3] Zubkov A. M., Serov A. A., “A natural approach to the experimental study of dependence between statistical tests”, Matematicheskie voprosy kriptografii, 12:1 (2021), 131–142 | DOI | MR

[4] Zaman J. K. M. , Ghosh R., “Review on fifteen statistical tests proposed by NIST”, J. Theor. Phys. Cryptography, 1 (2012), 18–31

[5] Sulak F., Doǧanaksoy A., Uǧuz M., Koçak O., “Periodic template tests: A family of statistical randomness tests for a collection of binary sequences”, Discrete Appl. Math., 271 (2019), 191–204 | DOI | MR | Zbl

[6] Soto J., Bassham L., Randomness Testing of the Advanced Encryption Standard Finalist Candidates, NIST IR 6483, Nat. Inst. Stand. Technol., 1999

[7] Sulak F., Uǧuz M., Koçak O., Doǧanaksoy A., “On the independence of statistical randomness tests included in the NIST test suite”, Turkish J. Electr. Eng. $\$ Comput. Sci., 25 (2017), 3673–3683 | DOI | MR

[8] Georgescu C., Simion E., “New results concerning the power of NIST randomness tests”, Proc. Romanian acad., ser. A., 18 (2017), 381–388 | MR

[9] Iwasaki A., Umeno K., “A new randomness test solving problems of Discrete Fourier Transform Test”, IEICE Trans. Fundam. Electronics, Commun. Comput. Sci., E101.A:8 (2018), 1204–1214 | DOI

[10] Burciu P., Simion E., “Systematic approach of NIST statistical tests dependencies”, J. Electr. Eng., Electronics, Control and Comput. Sci., 5:15 (2019), 1–6

[11] Billingsli P., Skhodimost veroyatnostnykh mer, perev. s angl., Nauka, M., 1977, 352 pp.

[12] Hoeffding W., Robbins H., “The central limit theorem for dependent random variables”, Duke Math. J., 15:3 (1948), 773–780 | DOI | MR | Zbl

[13] Petrov V. V., “Ob usilennom zakone bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 53:2 (2008), 379–382

[14] Seber G. A. F., Wild C. J., Nonlinear regression, 2nd ed., John Wiley Sons, New York, 2003, 582 pp. | MR