Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_2_a5, author = {O. A. Logachev and S. N. Fedorov and V. V. Yashchenko}, title = {On some invariants under the action of an extension of $GA(n,2)$ on the set of {Boolean} functions}, journal = {Diskretnaya Matematika}, pages = {66--85}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a5/} }
TY - JOUR AU - O. A. Logachev AU - S. N. Fedorov AU - V. V. Yashchenko TI - On some invariants under the action of an extension of $GA(n,2)$ on the set of Boolean functions JO - Diskretnaya Matematika PY - 2021 SP - 66 EP - 85 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a5/ LA - ru ID - DM_2021_33_2_a5 ER -
%0 Journal Article %A O. A. Logachev %A S. N. Fedorov %A V. V. Yashchenko %T On some invariants under the action of an extension of $GA(n,2)$ on the set of Boolean functions %J Diskretnaya Matematika %D 2021 %P 66-85 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2021_33_2_a5/ %G ru %F DM_2021_33_2_a5
O. A. Logachev; S. N. Fedorov; V. V. Yashchenko. On some invariants under the action of an extension of $GA(n,2)$ on the set of Boolean functions. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 66-85. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a5/
[1] Cheremushkin A. V., Dekompozitsiya i klassifikatsiya diskretnykh funktsii, KURS, Moskva, 2018, 288 pp.
[2] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, LENAND, Moskva, 2015, 576 pp.
[3] Logachev O. A., Fedorov S. N., Yashchenko V. V., “Boolean functions as points on the hypersphere in the Euclidean space”, Discrete Math. Appl., 29:2 (2019), 89–101 | DOI | MR | MR | Zbl
[4] Lechner R., “Harmonic analysis of switching functions”, Recent developments in switching theory, ed. A. Mukhopadhyay, Acad. Press, New York, 1971, 121–228 | DOI | MR
[5] Wu Ch.-K., Dawson E., “Construction of correlation immune Boolean functions”, Australasian J. Combinatorics, 21 (1997), 141–166 | MR
[6] Gopalan P., O'Donnell R., Servedio R. A., Shpilka A., Wimmer K., “Testing Fourier dimensionality and sparsity”, ICALP 2009, Lect. Notes Comput. Sci., 5555, 2009, 500–512 | DOI | MR | Zbl
[7] Carlet C. , Charpin P., “Cubic Boolean functions with highest resiliency”, IEEE Trans. Inf. Theory, 51:2 (2005), 562–571 | DOI | MR | Zbl
[8] Tarannikov Yu. V., “O znacheniyakh affinnogo ranga nositelya spektra platovidnykh funktsii”, Matematika i bezopasnost informatsionnykh tekhnologii (Mater. konf. v MGU 28–29 oktyabrya 2004 g.), MTsNMO, M., 2005, 226–231
[9] Logachev O. A., Sal'nikov A. A., Yashchenko V. V., “Nondegenerate normal forms of Boolean functions”, Dokl. Math., 62:1 (2000), 35–38 | MR | Zbl
[10] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Problemy peredachi informatsii, 33:1 (1997), 75–86 | MR
[11] Kavut S., Yücel M. D., “Generalized rotation symmetric and dihedral symmetric Boolean functions – 9 variable Boolean functions with nonlinearity 242”, AAECC–17, Lect. Notes Comput. Sci., 4851, 2007, 321–329 | DOI | MR | Zbl
[12] Maitra S., Balanced Boolean function on 13-variables having nonlinearity strictly greater than the bent concatenation bound, IACR eprint archive, 2007 http://eprint.iacr.org/2007/309.pdf | MR
[13] Patterson N. J., Wiedemann D. H., “The covering radius of the $(2^{15}, 16)$ Reed–Muller code is at least 16276”, IEEE Trans. Inf. Theory, IT-29:3 (1983), 354–356 | DOI | MR | Zbl
[14] Kavut S., Boolean functions with excellent cryptographic properties in autocorrelation and Walsh spectra, Ph. D. thesis, Dept of Electrical and Electronics Engineering, Middle East Techn. Univ., 2008, 78 pp.