On closed classes in partial $k$-valued logic that contain all polynomials
Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 6-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Pol_k$ be the set of all functions of $k$-valued logic representable by a polynomial modulo $k$, and let $Int(Pol_k)$ be the family of all closed classes (with respect to superposition) in the partial $k$-valued logic containing $Pol_k$ and consisting only of functions extendable to some function from $Pol_k$. Previously the author showed that if $k$ is the product of two different primes, then the family $Int(Pol_k)$ consists of 7 closed classes. In this paper, it is proved that if $k$ has at least 3 different prime divisors, then the family $Int(Pol_k)$ contains an infinitely decreasing (with respect to inclusion) chain of different closed classes.
Keywords: $k$-valued logic, partial $k$-valued logic, closed class, polynomial, predicate.
@article{DM_2021_33_2_a1,
     author = {V. B. Alekseev},
     title = {On closed classes in partial $k$-valued logic that contain all polynomials},
     journal = {Diskretnaya Matematika},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a1/}
}
TY  - JOUR
AU  - V. B. Alekseev
TI  - On closed classes in partial $k$-valued logic that contain all polynomials
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 6
EP  - 19
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a1/
LA  - ru
ID  - DM_2021_33_2_a1
ER  - 
%0 Journal Article
%A V. B. Alekseev
%T On closed classes in partial $k$-valued logic that contain all polynomials
%J Diskretnaya Matematika
%D 2021
%P 6-19
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_2_a1/
%G ru
%F DM_2021_33_2_a1
V. B. Alekseev. On closed classes in partial $k$-valued logic that contain all polynomials. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 6-19. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a1/

[1] Alekseev V. B., Voronenko A. A., “On some closed classes in partial two-valued logic”, Discrete Math. Appl., 4:5 (1994), 401–419 | DOI | MR | Zbl

[2] Lau, D., Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer Monographs in Mathematics, Springer, Berlin, 2006, 668 pp. | MR | Zbl

[3] Couceiro M., Haddad L., Schölzel K., Waldhauser T., “A solution to a problem of D. Lau: Complete classification of intervals in the lattice of partial Boolean clones”, J. Mult.-Valued Logic Soft Comput., 28 (2017), 47–58 | MR | Zbl

[4] Dudakova O. S., Problemy teoreticheskoi kibernetiki: XVIII mezhdunarodnaya konferentsiya (Penza, 19-23 iyunya 2017 g.), eds. Pod redaktsiei Yu.I. Zhuravleva, MAKS Press, Moskva, 2017

[5] Alekseev V. B., “On closed classes in partial k-valued logic that contain the class of monotone functions”, Discrete Math. Appl., 29:5 (2019), 277–285 | DOI | DOI | MR | Zbl

[6] Dudakova O. S., “Construction of an infinite set of classes of partial monotone functions of multi-valued logic”, Moscow Univ. Math. Bull., 74:1 (2019), 1–4 | DOI | MR | Zbl

[7] Remizov A. B., “Superstructure of the closed class of polynomials modulo $k$”, Discrete Math. Appl., 1:1 (1991), 9–22 | DOI | MR | Zbl