Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_2_a1, author = {V. B. Alekseev}, title = {On closed classes in partial $k$-valued logic that contain all polynomials}, journal = {Diskretnaya Matematika}, pages = {6--19}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a1/} }
V. B. Alekseev. On closed classes in partial $k$-valued logic that contain all polynomials. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 6-19. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a1/
[1] Alekseev V. B., Voronenko A. A., “On some closed classes in partial two-valued logic”, Discrete Math. Appl., 4:5 (1994), 401–419 | DOI | MR | Zbl
[2] Lau, D., Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer Monographs in Mathematics, Springer, Berlin, 2006, 668 pp. | MR | Zbl
[3] Couceiro M., Haddad L., Schölzel K., Waldhauser T., “A solution to a problem of D. Lau: Complete classification of intervals in the lattice of partial Boolean clones”, J. Mult.-Valued Logic Soft Comput., 28 (2017), 47–58 | MR | Zbl
[4] Dudakova O. S., Problemy teoreticheskoi kibernetiki: XVIII mezhdunarodnaya konferentsiya (Penza, 19-23 iyunya 2017 g.), eds. Pod redaktsiei Yu.I. Zhuravleva, MAKS Press, Moskva, 2017
[5] Alekseev V. B., “On closed classes in partial k-valued logic that contain the class of monotone functions”, Discrete Math. Appl., 29:5 (2019), 277–285 | DOI | DOI | MR | Zbl
[6] Dudakova O. S., “Construction of an infinite set of classes of partial monotone functions of multi-valued logic”, Moscow Univ. Math. Bull., 74:1 (2019), 1–4 | DOI | MR | Zbl
[7] Remizov A. B., “Superstructure of the closed class of polynomials modulo $k$”, Discrete Math. Appl., 1:1 (1991), 9–22 | DOI | MR | Zbl