Maximally nonlinear functions over finite fields
Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 47-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-place function over a field $\mathbf {F}_q$ with $q$ elements is called maximally nonlinear if it has the largest nonlinearity among all $q$-valued $n$-place functions. We show that, for even $n \ge 2$, a function is maximally nonlinear if and only if its nonlinearity is $q^{n-1}(q - 1) - q^{\frac n2-1}$; for $n=1$, the corresponding criterion for maximal nonlinearity is $q-2$. For $q>2$ and even $n \ge 2$, we describe the set of all maximally nonlinear quadratic functions and find its cardinality. In this case, all maximally nonlinear quadratic functions are quadratic bent functions and their number is smaller than the halved number of the bent functions.
Keywords: finite field, $q$-valued logic, nonlinearity, affine functions, bent functions.
@article{DM_2021_33_1_a4,
     author = {V. G. Ryabov},
     title = {Maximally nonlinear functions over finite fields},
     journal = {Diskretnaya Matematika},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a4/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - Maximally nonlinear functions over finite fields
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 47
EP  - 63
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_1_a4/
LA  - ru
ID  - DM_2021_33_1_a4
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T Maximally nonlinear functions over finite fields
%J Diskretnaya Matematika
%D 2021
%P 47-63
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_1_a4/
%G ru
%F DM_2021_33_1_a4
V. G. Ryabov. Maximally nonlinear functions over finite fields. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a4/

[1] Ambrosimov A. S., “Properties of bent functions of $q$-valued logic over finite fields”, Discrete Math. Appl., 4:4 (1994), 341–350 | DOI | MR | Zbl

[2] Ambrosimov A. S., “O priblizhenii funktsii $k$-znachnoi logiki funktsiyami iz zadannoi sistemy”, Fundamentalnaya i prikladnaya matematika, 3:3 (1997), 653–674 | MR | Zbl

[3] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10 (2007), 97–122

[4] Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ. Inc., 1983, 755 pp. | MR | MR | Zbl

[5] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes, Parts I, II, North-Holland, Amsterdam, 1977 | MR | Zbl

[6] Ryabov V. G., “O stepeni ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Prikladnaya diskretnaya matematika, 2019, no. 45, 13–25 | Zbl

[7] Ryabov V. G., “O stepeni ogranichenii vektornykh funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Diskretnaya matematika, 32:2 (2020), 61–70 | MR

[8] Ryabov V. G., “O priblizhenii ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya affinnymi analogami”, Diskretnaya matematika, 32:4 (2020), 89–102 | MR

[9] Cheremushkin A. V., “Otsenka ranga sluchainoi kvadratichnoi formy nad konechnym polem”, Prikladnaya diskretnaya matematika, 2017, no. 35, 29–37 | MR | Zbl

[10] Cheremushkin A. V., Dekompoziya i klassifikatsiya diskretnykh funktsii, Monografiya, KURS, Moskva, 2018, 288 pp.

[11] Kumar, P. V., Scholtz, R. A., Welch, L. R., “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[12] Rothaus, O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[13] Tokareva, N. N., Bent Functions, Elsevier, Academic Press, 2015, 220 pp. | MR | Zbl