Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_1_a3, author = {A. S. Rybakov}, title = {Estimates of lengths of shortest nonzero vectors in some lattices. {I}}, journal = {Diskretnaya Matematika}, pages = {31--46}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a3/} }
A. S. Rybakov. Estimates of lengths of shortest nonzero vectors in some lattices. I. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 31-46. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a3/
[1] Cassels J.W.S., An Introduction to the Geometry of Numbers, Springer-Verlag, 1959 | MR | MR | Zbl
[2] Korn G.A., Korn T.M., Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review, McGraw-Hill Book Company, 1968 | MR
[3] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 512 pp.; Prachar K., Primzahlverteilung, Springer-Verlag, Berlin Göttingen Heidelberg, 1957 | MR | Zbl
[4] Rybakov A.S., “The shortest vectors of lattices connected with a linear congruent generator”, Discrete Math. Appl., 14:5 (2004), 479–500 | DOI | MR | Zbl
[5] Rybakov A.S., “On the number of integer points in a multidimensional domain”, Discrete Math. Appl., 28:6 (2018), 385–395 | DOI | MR | Zbl
[6] Feldman N.I., Sedmaya problema Gilberta, Izd-vo MGU, M., 1982, 312 pp.
[7] Friese A.M., Hastad J., Kannan R., Lagarias J.C., Shamir A., “Reconstructing truncated integer variables satisfying linear congruences”, SIAM J. Comput., 17:2 (1988), 262–280 | DOI | MR