Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues
Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 89-102
Voir la notice de l'article provenant de la source Math-Net.Ru
For a finite $q$-element field $\mathbf{F}_q$, we established a relation between parameters characterizing the measure of affine approximation of a $q$-valued logic function and similar parameters for its restrictions to linear manifolds. For $q>2$, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates $q^{n-1}(q-1) - q^{n/2-1}$ and $q^{r-1}(q - 1) - q^{r/2-1}$, for the nonlinearity of an $n$-place $q$-valued logic function and of its restrictions to manifolds of dimension $r$. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.
Keywords:
$q$-valued logic, restriction, manifold, affine function, nonlinearity.
@article{DM_2020_32_4_a4,
author = {V. G. Ryabov},
title = {Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues},
journal = {Diskretnaya Matematika},
pages = {89--102},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/}
}
TY - JOUR AU - V. G. Ryabov TI - Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues JO - Diskretnaya Matematika PY - 2020 SP - 89 EP - 102 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/ LA - ru ID - DM_2020_32_4_a4 ER -
V. G. Ryabov. Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues. Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 89-102. http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/