Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_4_a4, author = {V. G. Ryabov}, title = {Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues}, journal = {Diskretnaya Matematika}, pages = {89--102}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/} }
TY - JOUR AU - V. G. Ryabov TI - Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues JO - Diskretnaya Matematika PY - 2020 SP - 89 EP - 102 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/ LA - ru ID - DM_2020_32_4_a4 ER -
V. G. Ryabov. Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues. Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 89-102. http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/
[1] Ambrosimov A. S., “O priblizhenii funktsii $k$-znachnoi logiki funktsiyami iz zadannoi sistemy”, Fund. i prikl. matem., 3:3 (1997), 653–674 | MR | Zbl
[2] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | MR
[3] Zubkov A. M., Serov A. A., “Bounds for the number of Boolean functions admitting affine approximations of a given accuracy”, Discrete Math. Appl., 20:5-6 (2010), 467–486 | DOI | MR | Zbl
[4] Ryabov V. G., “O stepeni ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Prikl. diskretn. matem., 2019, no. 45, 13–25
[5] Ryabov V. G., “O stepeni ogranichenii vektornykh funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Diskretnaya matematika, 32:2 (2020), 61–70 | MR
[6] Cheremushkin A. V., Dekompoziya i klassifikatsiya diskretnykh funktsii, KURS, Moskva, 2018, 288 pp.
[7] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Inf. Theory, 5:5 (May 1959), 176–186 | DOI
[8] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[9] Tokareva N. N., Bent Functions, Elsevier, Academic Press, 2015, 220 pp. | MR | Zbl