Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues
Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 89-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite $q$-element field $\mathbf{F}_q$, we established a relation between parameters characterizing the measure of affine approximation of a $q$-valued logic function and similar parameters for its restrictions to linear manifolds. For $q>2$, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates $q^{n-1}(q-1) - q^{n/2-1}$ and $q^{r-1}(q - 1) - q^{r/2-1}$, for the nonlinearity of an $n$-place $q$-valued logic function and of its restrictions to manifolds of dimension $r$. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.
Keywords: $q$-valued logic, restriction, manifold, affine function, nonlinearity.
@article{DM_2020_32_4_a4,
     author = {V. G. Ryabov},
     title = {Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues},
     journal = {Diskretnaya Matematika},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 89
EP  - 102
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/
LA  - ru
ID  - DM_2020_32_4_a4
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues
%J Diskretnaya Matematika
%D 2020
%P 89-102
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/
%G ru
%F DM_2020_32_4_a4
V. G. Ryabov. Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues. Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 89-102. http://geodesic.mathdoc.fr/item/DM_2020_32_4_a4/

[1] Ambrosimov A. S., “O priblizhenii funktsii $k$-znachnoi logiki funktsiyami iz zadannoi sistemy”, Fund. i prikl. matem., 3:3 (1997), 653–674 | MR | Zbl

[2] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | MR

[3] Zubkov A. M., Serov A. A., “Bounds for the number of Boolean functions admitting affine approximations of a given accuracy”, Discrete Math. Appl., 20:5-6 (2010), 467–486 | DOI | MR | Zbl

[4] Ryabov V. G., “O stepeni ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Prikl. diskretn. matem., 2019, no. 45, 13–25

[5] Ryabov V. G., “O stepeni ogranichenii vektornykh funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Diskretnaya matematika, 32:2 (2020), 61–70 | MR

[6] Cheremushkin A. V., Dekompoziya i klassifikatsiya diskretnykh funktsii, KURS, Moskva, 2018, 288 pp.

[7] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Inf. Theory, 5:5 (May 1959), 176–186 | DOI

[8] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[9] Tokareva N. N., Bent Functions, Elsevier, Academic Press, 2015, 220 pp. | MR | Zbl