Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_4_a3, author = {F. M. Malyshev}, title = {Generalized de {Bruijn} graphs}, journal = {Diskretnaya Matematika}, pages = {52--88}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_4_a3/} }
F. M. Malyshev. Generalized de Bruijn graphs. Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 52-88. http://geodesic.mathdoc.fr/item/DM_2020_32_4_a3/
[1] De Bruijn N.G., “A combinatorial problem”, Proc. Sect. Sci. Koninkl. Nederl. Akad. Wetensch. Amsterdam, 49:7 (1946), 758–764 | MR
[2] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR
[3] Good I.J., “Normal recurring decimals”, J. London Math. Soc., 21:3 (1946), 167–169 | DOI | MR | Zbl
[4] Fredricksen H., “A survey of full length nonlinear shift register cycle algorithms”, SIAM Rev., 24:2 (1982), 195–221 | DOI | MR | Zbl
[5] Kratko M.I., Strok V.V., “Posledovatelnosti de Breina s ogranicheniyami”, Voprosy kibernetiki. Kombinatornyi analiz i teoriya grafov, Nauka, M., 1980, 80–84
[6] Sherisheva E.V., “O chisle konechnykh avtomatov, ustanavlivaemykh postoyannym vkhodom v fiksirovannoe sostoyanie”, Diskretnaya matematika, 6:4 (1994), 80–86 | MR | Zbl
[7] Erokhin A. V., Malyshev F. M., Trishin A. E., “Mnogomernyi lineinyi metod i pokazateli rasseivaniya lineinoi sredy shifrpreobrazovanii”, Matematicheskie voprosy kriptografii, 8:4 (2017), 29-62
[8] Kharari F., Teoriya grafov, Mir, M., 1973, 302 pp.; Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp. | MR | Zbl
[9] Fisher P., Aljohani N., Baek J., “Generation of finite inductive, pseudo random, binary sequences”, J. Inf. Process. Syst., 13:6 (2017), 1554–1574
[10] Wu J., Jia R., Li Q., “$g$-circulant solutions to the (0,1)-matrix equation $A^m=J_n$”, Linear Algebra Appl., 345:1 (2002), 195–224 | MR | Zbl
[11] Hoffman A.J., “Research problem 2-11”, J. Combin. Theory, 2:3 (1967), 393 | DOI
[12] Trefois M., Van Dooren P., Delvenne J.-Ch., “Binary factorizations of the matrix of all ones”, Linear Alg. Appl., 468 (2015), 63–79 | DOI | MR | Zbl
[13] Ma S.L., Waterhouse W.C., “The g-circulant solutions of $A^m=\lambda J$”, Linear Algebra Appl., 85 (1987), 211–220 | DOI | MR | Zbl
[14] King F., Wang K., “On the g-circulant solutions to the matrix equation $A^m=\lambda J$”, J. Combin. Theory. Ser. A, 38:2 (1985), 182–186 | DOI | MR | Zbl
[15] Wang K., “On the $g$-circulant solutions to the matrix equation $A^m=\lambda J$”, J. Combin. Theory. Ser. A, 33:3 (1982), 287–296 | DOI | MR
[16] Wang T., Wang J., “On some solutions to the matrix Equation $A^m=J$”, J. Dalian Univ. Technology, 10:6 (1990), 621–624 | MR
[17] Du D.Z., Hwang F.K., “Generalized de Bruijn digraphs”, Networks, 18:1 (1988), 27–38 | DOI | MR | Zbl
[18] Esfahanian A.H., Hakimi S.L., “Faul-tolerant routing in de Bruin communication networks”, IEEE Trans. Comput., C-34:9 (1985), 777–788 | DOI | MR
[19] Pradhan D.K., “Fault-tolerant multiprocessor and VSLI-based systems communication architecture”, Fault Tolerant Computing Theory and Techniques, v. II, Prentice-Hall, Englewood Cliffs, NJ, 1986, 467–576
[20] Grodzki Z., Wronski A., “Generalized de Bruijn multigraphs of rank $\overrightarrow{k}$”, Ars Combinatoria, 50 (1998), 161–176 | MR | Zbl
[21] Malyshev F.M., Tarakanov V.E., “Obobschennye grafy de Breina”, Matematicheskie zametki, 62:4 (1997), 540–548 | Zbl
[22] Tarakanov V.E., “O gruppakh avtomorfizmov obobschennykh grafov de Breina”, Trudy po diskretnoi matematike, 5, FIZMATLIT, M., 235–240
[23] Malyshev F.M., “Beskonechnye serii prostykh obobschennykh grafov de Breina”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Mater. XV Mezhdunar. konf., TGPU im. L. N. Tolstogo, Tula, 2018, 187–190