New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$
Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 10-37

Voir la notice de l'article provenant de la source Math-Net.Ru

A hypergraph $H=(V,E)$ has the property $B_k$ if there exists an assignment of two colors to $V$ such that each edge contains at least $k$ vertices of each color. A hypergraph is called simple if every two edges of it have at most one common vertex. We obtain a new lower bound for the minimal number of edges of $n$-uniform simple hypergraph without the property $B_k$.
Keywords: simple hypergraphs, colorings of hypergraphs, property $B$.
@article{DM_2020_32_4_a1,
     author = {Yu. A. Demidovich},
     title = {New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$},
     journal = {Diskretnaya Matematika},
     pages = {10--37},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/}
}
TY  - JOUR
AU  - Yu. A. Demidovich
TI  - New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 10
EP  - 37
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/
LA  - ru
ID  - DM_2020_32_4_a1
ER  - 
%0 Journal Article
%A Yu. A. Demidovich
%T New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$
%J Diskretnaya Matematika
%D 2020
%P 10-37
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/
%G ru
%F DM_2020_32_4_a1
Yu. A. Demidovich. New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$. Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 10-37. http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/