New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$
Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 10-37
Voir la notice de l'article provenant de la source Math-Net.Ru
A hypergraph $H=(V,E)$ has the property $B_k$ if there exists an assignment of two colors to $V$ such that each edge contains at least $k$ vertices of each color. A hypergraph is called simple if every two edges of it have at most one common vertex. We obtain a new lower bound for the minimal number of edges of $n$-uniform simple hypergraph without the property $B_k$.
Keywords:
simple hypergraphs, colorings of hypergraphs, property $B$.
@article{DM_2020_32_4_a1,
author = {Yu. A. Demidovich},
title = {New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$},
journal = {Diskretnaya Matematika},
pages = {10--37},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/}
}
TY - JOUR AU - Yu. A. Demidovich TI - New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$ JO - Diskretnaya Matematika PY - 2020 SP - 10 EP - 37 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/ LA - ru ID - DM_2020_32_4_a1 ER -
Yu. A. Demidovich. New lower bound for the minimal number of edges of simple uniform hypergraph without the property $B_k$. Diskretnaya Matematika, Tome 32 (2020) no. 4, pp. 10-37. http://geodesic.mathdoc.fr/item/DM_2020_32_4_a1/