Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_3_a8, author = {S. Faruqi and S. Katre and M. Garg}, title = {Pseudo orthogonal {Latin} squares}, journal = {Diskretnaya Matematika}, pages = {113--129}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a8/} }
S. Faruqi; S. Katre; M. Garg. Pseudo orthogonal Latin squares. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 113-129. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a8/
[1] Bolshakova N. S., “The intersection number of complete r-partite graphs”, Discrete Math. Appl., 18:2 (2008), 187–197 | MR | Zbl
[2] Bose R.C., Shrikhande S.S., Parker E.T., “Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture”, Canad. J. Math., 12 (1960), 189–203 | MR | Zbl
[3] Erdös P., Goodman A.W., Pósa L., “The representation of a graph by set intersections”, Canad. J. Math., 18 (1966), 106–112 | MR | Zbl
[4] Hedayat A., “An application of sum composition: A self orthogonal Latin square of order ten”, J. Comb. Theory, Ser. A, 14:2 (1973), 256–260 | MR | Zbl
[5] Hon W.-K. et al., “Edge-clique covers of the tensor product”, Proc. 10th Int. Conf. Algor. Aspects Inf. Manag. (Vancouver), 2014, 66–74 | MR | Zbl
[6] Katre S.A., Yahyaei L., Arumugam S., “Coprime index of a graph”, Electr. Notes Discr. Math., 60:Suppl. C (2017), 77–82 | MR | Zbl
[7] Keedwell A.D., Dénes J., Latin Squares and their Applications, Elsevier, 2015 | MR | Zbl
[8] Laywine C.F., Mullen G.L., Discrete Mathematics Using Latin Squares, J. Wiley Sons, 1998 | MR | Zbl
[9] LindnerC., Rodger C., Design Theory, CRC Press, Boca Raton, FL, 1997 | MR
[10] Rodger C.A., Lindner C.C., Design theory, Chapman and Hall/CRC, 2008 | MR
[11] Stinson D.R., Combinatorial Designs: Constructions and Analysis, Springer Sci. Busin. Media, 2007 | MR
[12] West D. B., Introduction to Graph Theory, Prentice Hall, India Learning Private Ltd., 2002 | MR