Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_3_a6, author = {S. N. Selezneva}, title = {Multiaffine polynomials over a finite field}, journal = {Diskretnaya Matematika}, pages = {85--97}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a6/} }
S. N. Selezneva. Multiaffine polynomials over a finite field. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 85-97. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a6/
[1] Gorshkov S. P., “O slozhnosti raspoznavaniya multiaffinnosti, biyunktivnosti, slaboi polozhitelnosti i slaboi otritsatelnosti”, Obozr. promyshl. i prikl. matem., 4:2 (1997), 216–237
[2] Creignou N., Khanna S., Sudan M., Complexity classifications of Boolean constraint satisfaction problems, SIAM, 2001, xii+100 pp. | MR | Zbl
[3] Gorshkov S. P., Tarasov A. V., Slozhnost resheniya sistem bulevykh uravnenii, Kurs, M., 2017, 192 pp.
[4] Logachev O. A., Sukaev A. A., Fedorov S. N., “Ob odnom metode resheniya sistem kvadratichnykh bulevykh uravnenii, ispolzuyuschem lokalnye affinnosti”, Informatika i ee primen., 13:2 (2019), 37–46 | MR
[5] Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ. Inc., 1983, 755 pp. | MR | MR | Zbl
[6] Baev V. V., “On some algorithms for constructing low-degree annihilators for Boolean functions”, Discrete Math. Appl., 16:5 (2006), 439–452 | DOI | MR | Zbl
[7] Baev V. V., “An enhanced algorithm to search for low-degree annihilators for a Zhegalkin polynomial”, Discrete Math. Appl., 17:5 (2007), 533–538 | DOI | DOI | MR | Zbl | Zbl