Minimal contact circuits for characteristic functions of spheres
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 68-75
We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex $\tilde\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_1,\ldots,\sigma_n\in\{0,1\}$, we mean the Boolean function $\varphi^{(n)}_{\tilde\sigma}(x_1,\ldots,x_n)$ which is equal to 1 on those and only those tuples of values that differ from the tuple $\tilde\sigma$ only in one digit. It is shown that the number $3n-2$ of contacts is necessary and sufficient for implementation of $\varphi^{(n)}_{\tilde\sigma}(\tilde x)$ by a contact circuit.
Keywords:
Boolean function
Mots-clés : contact circuit, minimal circuit.
Mots-clés : contact circuit, minimal circuit.
@article{DM_2020_32_3_a4,
author = {N. P. Red'kin},
title = {Minimal contact circuits for characteristic functions of spheres},
journal = {Diskretnaya Matematika},
pages = {68--75},
year = {2020},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a4/}
}
N. P. Red'kin. Minimal contact circuits for characteristic functions of spheres. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 68-75. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a4/
[1] Yablonskii S. V., “Osnovnye ponyatiya kibernetiki”, Problemy kibernetiki, 2 (1959), 7–38 | MR
[2] Shennon K. E., Raboty po teorii informatsii i kibernetike, IL, Moskva, 1963, 829 pp.
[3] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, MGU, Moskva, 1984, 138 pp.
[4] Cardot C., “Quelques résultats sur l'application de l'algèbre de Boole à la synthèse des circuits à relais”, Ann. Télécomm., 7:2 (1952), 75–84 | MR