Minimal contact circuits for characteristic functions of spheres
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 68-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex $\tilde\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_1,\ldots,\sigma_n\in\{0,1\}$, we mean the Boolean function $\varphi^{(n)}_{\tilde\sigma}(x_1,\ldots,x_n)$ which is equal to 1 on those and only those tuples of values that differ from the tuple $\tilde\sigma$ only in one digit. It is shown that the number $3n-2$ of contacts is necessary and sufficient for implementation of $\varphi^{(n)}_{\tilde\sigma}(\tilde x)$ by a contact circuit.
Keywords: Boolean function, contact circuit, minimal circuit.
@article{DM_2020_32_3_a4,
     author = {N. P. Red'kin},
     title = {Minimal contact circuits for characteristic functions of spheres},
     journal = {Diskretnaya Matematika},
     pages = {68--75},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a4/}
}
TY  - JOUR
AU  - N. P. Red'kin
TI  - Minimal contact circuits for characteristic functions of spheres
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 68
EP  - 75
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a4/
LA  - ru
ID  - DM_2020_32_3_a4
ER  - 
%0 Journal Article
%A N. P. Red'kin
%T Minimal contact circuits for characteristic functions of spheres
%J Diskretnaya Matematika
%D 2020
%P 68-75
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a4/
%G ru
%F DM_2020_32_3_a4
N. P. Red'kin. Minimal contact circuits for characteristic functions of spheres. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 68-75. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a4/

[1] Yablonskii S. V., “Osnovnye ponyatiya kibernetiki”, Problemy kibernetiki, 2 (1959), 7–38 | MR

[2] Shennon K. E., Raboty po teorii informatsii i kibernetike, IL, Moskva, 1963, 829 pp.

[3] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, MGU, Moskva, 1984, 138 pp.

[4] Cardot C., “Quelques résultats sur l'application de l'algèbre de Boole à la synthèse des circuits à relais”, Ann. Télécomm., 7:2 (1952), 75–84 | MR