Variance of the number of cycles of random $A$-permutation
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 135-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random permutations having uniform distribution on the set of all permutations of the $n$-element set with lengths of cycles belonging to a fixed set $A$ (so-called $A$-permutations). For some class of sets $A$ the asymptotic formula for the variance of the number of cycles of such permutations is obtained.
Keywords: random $A$-permutations, number of cycles, variance.
@article{DM_2020_32_3_a10,
     author = {A. L. Yakymiv},
     title = {Variance of the number of cycles of random $A$-permutation},
     journal = {Diskretnaya Matematika},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a10/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Variance of the number of cycles of random $A$-permutation
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 135
EP  - 146
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a10/
LA  - ru
ID  - DM_2020_32_3_a10
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Variance of the number of cycles of random $A$-permutation
%J Diskretnaya Matematika
%D 2020
%P 135-146
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a10/
%G ru
%F DM_2020_32_3_a10
A. L. Yakymiv. Variance of the number of cycles of random $A$-permutation. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 135-146. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a10/

[1] Billingsley P., Convergence of Probability Measures, New York: John Wiley Sons, 1968, xii+253 pp. | MR | Zbl

[2] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “On some classes of random variables on cycles of permutations”, Math. USSR-Sb., 36:1 (1980), 87–99 | MR | Zbl | Zbl

[3] Goncharov V. L., “On the field of combinatory analysis”, Amer. Math. Soc. Transl., 19 (1962), 1–46 | MR | Zbl | Zbl

[4] Kubilius, J., Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc., Providence, RA, 1964 | MR | Zbl

[5] Kubilius, J., “On the estimate of the second central moment for arbitrary additive arithmetic functions”, Liet. Mat. Rink., 23 (1983), 110–117 | MR

[6] Klimavic̆ius, J., Manstavic̆ius, E., “Turán-Kubilius' inequality on permutations”, Ann. Univ. Sci. Budapest. Sect. Comput., 48 (2018), 45–51 | MR | Zbl

[7] Manstavic̆ius E., Stepas V., “Variance of additive functions defined on random assemblies”, Lith. Math. J., 57:2 (2017), 222–235 | MR | Zbl

[8] Pavlov A. I., “On two classes of permutations with number-theoretic conditions on the lengths of the cycles”, Math. Notes, 62:6 (1997), 739–746 | MR | Zbl

[9] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004, 424 pp.

[10] Turán, P., “Uber Einige Verallgemeinerungen Eines Satzes von Hardy und Ramanujan”, J. London Math. Soc., 11:2 (1936), 125—133 | MR

[11] Yakymiv A. L., “Asymptotics of the moments of the number of cycles of a random $A$-permutation”, Math. Notes, 88:5 (2010), 759–766 | MR | Zbl

[12] Yakymiv A. L., “Asimptotika momentov chisla tsiklov sluchainoi $A$-podstanovki s ostatochnym chlenom”, Diskretnaya matematika, 31:3 (2019), 114—127 | MR