Trees with a given number of leaves and the maximal number of maximum independent sets
Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 71-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of trees with maximal possible number of maximum independent sets among all $n$-vertex trees with exactly $l$ leaves is obtained. For all values of the parameters $n$ and $l$ the extremal tree is unique and is the result of merging the endpoints of $l$ simple paths.
Keywords: independent set, maximum independent set, maximal independent set, extremal tree.
@article{DM_2020_32_2_a5,
     author = {D. S. Taletskii and D. S. Malyshev},
     title = {Trees with a given number of leaves and the maximal number of maximum independent sets},
     journal = {Diskretnaya Matematika},
     pages = {71--84},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_2_a5/}
}
TY  - JOUR
AU  - D. S. Taletskii
AU  - D. S. Malyshev
TI  - Trees with a given number of leaves and the maximal number of maximum independent sets
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 71
EP  - 84
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_2_a5/
LA  - ru
ID  - DM_2020_32_2_a5
ER  - 
%0 Journal Article
%A D. S. Taletskii
%A D. S. Malyshev
%T Trees with a given number of leaves and the maximal number of maximum independent sets
%J Diskretnaya Matematika
%D 2020
%P 71-84
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_2_a5/
%G ru
%F DM_2020_32_2_a5
D. S. Taletskii; D. S. Malyshev. Trees with a given number of leaves and the maximal number of maximum independent sets. Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 71-84. http://geodesic.mathdoc.fr/item/DM_2020_32_2_a5/

[1] Taletskii D. S., Malyshev D. S., “On trees of bounded degree with maximal number of greatest independent sets”, J. Appl. Industr. Math., 12:2 (2018), 369–381 | DOI

[2] Taletskii D. S., Malyshev D. S., “Trees without twin-leaves with smallest number of maximal independent sets”, Discrete Math. Appl., 30:1 (2020), 53–67 | DOI

[3] Aimei Y., Xuezheng L., “The Merrifield-Simmons indices and Hosoya indices of trees with $k$ pendant vertices”, J. Math. Chem., 41:1 (2007), 33–43

[4] Chen Y., Wen S., “On the total number of matchings of trees with prescribed diameter”, Int. J. Nonlin. Sci., 4:1 (2007), 37–43

[5] Dainyak A. B., “On the number of independent sets in the trees of a fixed diameter”, J. Appl. Industr. Math., 4:2 (2010), 163–171

[6] Griggs J., Grinstead C., Guichard D., “The number of maximal independent sets in a connected graph”, Discr. Math., 68:2–3 (1988), 211–220

[7] Hanyuan D., Qiuzhi G., “On the minimal Merrifield-Simmons index of trees of order $n$ with at least $\lfloor \frac{n}{2} + 1 \rfloor$ pendant vertices”, MATCH Commun. in Math. and Comput. Chem., 60 (2008), 601–608

[8] Heuberger C., Wagner S., “Maximizing the number of independent subsets over trees with bounded degree”, J. Graph Theory, 58:1 (2008), 49–68

[9] Hopkins G., Staton W., “Graphs with unique maximum independent sets”, Discr. Math., 57 (1985), 245–251

[10] Hujter M., Tuza Z., “The number of maximal independent sets in triangle-free graphs”, SIAM J. Discr. Math., 6:2 (1993), 284–288

[11] Jou M., Chang G., “Maximal independent sets in graphs with at most one cycle”, Discr. Appl. Math., 79:1–3 (1997), 67–73

[12] Jou M., Chang G., “The number of maximum independent sets in graphs”, J. Graph Theory, 4:4 (2000), 685–695

[13] Knopfmacher A., Tichy R. F., Wagner S., Ziegler V., “Graphs, partitions and Fibonacci numbers”, Discr. Appl. Math., 155:10 (2007), 1175–1187

[14] Li X., Zhao H., Gutman I., “On the Merrifield-Simmons index of trees”, MATCH Commun. Math. and Comput. Chem., 54:2 (2005), 389–402

[15] Liu J., “Maximal independent sets in bipartite graphs”, J. Graph Theory, 17:1 (1993), 495–507

[16] Moon J., Moser L., “On cliques in graphs”, Isr. J. Math., 3:1 (1965), 23–28

[17] Sagan B. E., “A note on independent sets in trees”, SIAM J. Discr. Math., 1 (1988), 105–108

[18] Pan X.-F., Xu J.-M., Yang C., Zhou M.-J., “Some graphs with minimum Hosoya index and maximum Merrifield–Simmons index”, MATCH Commun. Math. and Comput. Chem., 57 (2007), 235–242

[19] Wilf H., “The number of maximal independent sets in a tree”, SIAM J. Algebr. Discr. Meth., 7:1 (1986), 125–130

[20] Zito J., “The structure and maximum number of maximum independent sets in trees”, J. Graph Theory, 15:2 (1991), 207–221