On the degree of restrictions of $q$-valued logic vector functions to linear manifolds
Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates for the probability that for a randomly selected $k$-dimensional $n$-place $q$-valued logic vector function there exists a linear manifold of fixed dimension such that the degree of the restriction of the function to this manifold is not larger than the given value. The asymptotics of the number of manifolds on which the restrictions are affine is obtained. It is shown that if $n \to \infty$ and $k\leq n/q$, then for almost all $k$-dimensional $n$-place vector functions the maximum dimension of a manifold on which the restriction is affine lies in the interval $[\lfloor \log_q \frac{n}{k}+\log_q \log_q \frac{n}{k} \rfloor, \lceil \log_q \frac{n}{k}+\log_q \log_q \frac{n}{k} \rceil]$, while the analogous parameter for the case of fixed variables lies in the range $[\lfloor \log_q \frac{n}{k} \rfloor, \lceil \log_q \frac{n}{k} \rceil]$.
Keywords: $q$-valued logic, vector function, restriction, manifold, degree.
@article{DM_2020_32_2_a4,
     author = {V. G. Ryabov},
     title = {On the degree of restrictions of $q$-valued logic vector functions to linear manifolds},
     journal = {Diskretnaya Matematika},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_2_a4/}
}
TY  - JOUR
AU  - V. G. Ryabov
TI  - On the degree of restrictions of $q$-valued logic vector functions to linear manifolds
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 61
EP  - 70
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_2_a4/
LA  - ru
ID  - DM_2020_32_2_a4
ER  - 
%0 Journal Article
%A V. G. Ryabov
%T On the degree of restrictions of $q$-valued logic vector functions to linear manifolds
%J Diskretnaya Matematika
%D 2020
%P 61-70
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_2_a4/
%G ru
%F DM_2020_32_2_a4
V. G. Ryabov. On the degree of restrictions of $q$-valued logic vector functions to linear manifolds. Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 61-70. http://geodesic.mathdoc.fr/item/DM_2020_32_2_a4/

[1] Alon N., Spencer J. H., The Probabilistic Method, Wiley, 1992

[2] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Uchebnik v 2-kh t., v. 2, Gelios ARV, Moskva, 2003, 416 pp.

[3] Ryabov V.G., “O stepeni ogranichenii funktsii $q$-znachnoi logiki na lineinye mnogoobraziya”, Prikladnaya diskretnaya matematika, 2019, no. 45, 13–25

[4] Cheremushkin A.V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 2(8), 22–33