On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$
Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $b, n$ be two positive integers such that $b\geq 2$, and $S(b,n)$ be the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$. Applying two order relations, we give formulas for computing the embedding dimension, the Frobenius number, the type and the genus of $S(b,n)$.
Keywords: Numerical semigroups, Embedding dimension, Frobenius number, Pseudo-Frobenius number, Genus.
@article{DM_2020_32_2_a0,
     author = {Ze Gu},
     title = {On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$},
     journal = {Diskretnaya Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_2_a0/}
}
TY  - JOUR
AU  - Ze Gu
TI  - On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 3
EP  - 14
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_2_a0/
LA  - ru
ID  - DM_2020_32_2_a0
ER  - 
%0 Journal Article
%A Ze Gu
%T On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$
%J Diskretnaya Matematika
%D 2020
%P 3-14
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_2_a0/
%G ru
%F DM_2020_32_2_a0
Ze Gu. On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$. Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_2020_32_2_a0/

[1] Apéry R., “Sur les branches superlinéaires des courbes algébriques”, C. R. Acad. Sci. Paris, 222 (1946), 1198–1200

[2] Gu Z., Tang X.L., “The Frobenius problem for a class of numerical semigroups”, Int. J. Number Theory, 13:5 (2017), 1335–1347

[3] Alfonsín J.L.R., The Diophantine Frobenius Problem, Oxford University Press, London, 2005

[4] Rosales J.C., Branco M.B., Torrão D., “The Frobenius problem for Mersenne numerical semigroups”, Mathematische Zeitschrift, 286:1 (2017), 741–749

[5] Rosales J.C., Branco M.B., Torrão D., “The Frobenius problem for Thabit numerical semigroups”, J. Number Theory, 155 (2015), 85–99

[6] Rosales J.C., Branco M.B., Torrão D., “The Frobenius problem for repunit numerical semigroups”, Ramanujan J., 40:2 (2016), 323–334

[7] Rosales J.C., García-Sánchez P.A., Numerical Semigroups, Springer, New York, 2009

[8] Sylvester J.J., “On subvariants, i.e. semi-invariants to binary quantics of an unlimited order”, Amer. J. Math., 1882, 79–136

[9] Tripathi A., “Formulae for the Frobenius number in three variables”, J. Number Theory, 170 (2017), 368–389