Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_2_a0, author = {Ze Gu}, title = {On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$}, journal = {Diskretnaya Matematika}, pages = {3--14}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_2_a0/} }
Ze Gu. On the numerical semigroup generated by $\{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\}$. Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/DM_2020_32_2_a0/
[1] Apéry R., “Sur les branches superlinéaires des courbes algébriques”, C. R. Acad. Sci. Paris, 222 (1946), 1198–1200
[2] Gu Z., Tang X.L., “The Frobenius problem for a class of numerical semigroups”, Int. J. Number Theory, 13:5 (2017), 1335–1347
[3] Alfonsín J.L.R., The Diophantine Frobenius Problem, Oxford University Press, London, 2005
[4] Rosales J.C., Branco M.B., Torrão D., “The Frobenius problem for Mersenne numerical semigroups”, Mathematische Zeitschrift, 286:1 (2017), 741–749
[5] Rosales J.C., Branco M.B., Torrão D., “The Frobenius problem for Thabit numerical semigroups”, J. Number Theory, 155 (2015), 85–99
[6] Rosales J.C., Branco M.B., Torrão D., “The Frobenius problem for repunit numerical semigroups”, Ramanujan J., 40:2 (2016), 323–334
[7] Rosales J.C., García-Sánchez P.A., Numerical Semigroups, Springer, New York, 2009
[8] Sylvester J.J., “On subvariants, i.e. semi-invariants to binary quantics of an unlimited order”, Amer. J. Math., 1882, 79–136
[9] Tripathi A., “Formulae for the Frobenius number in three variables”, J. Number Theory, 170 (2017), 368–389