Large deviations of branching process in a random environment. II
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 135-156

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the probabilities of large deviations for the branching process $ Z_n $ in a random environment, which is formed by independent identically distributed variables. It is assumed that the associated random walk $ S_n = \xi_1 + \ldots + \xi_n $ has a finite mean $ \mu $ and satisfies the Cramér condition $ E e^{h \xi_i} \infty $, $ 0 $. Under additional moment constraints on $ Z_1 $, the exact asymptotic of the probabilities $ {\mathbf P} (\ln Z_n \in [x, x + \Delta_n)) $ is found for the values $ x/n $ varying in the range depending on the type of process, and for all sequences $ \Delta_n $ that tend to zero sufficiently slowly as $ n \to \infty $. A similar theorem is proved for a random process in a random environment with immigration.
Keywords: branching processes in random environment, large deviation probabilities, branching processes with immigration.
@article{DM_2020_32_1_a9,
     author = {A. V. Shklyaev},
     title = {Large deviations of branching process in a random environment. {II}},
     journal = {Diskretnaya Matematika},
     pages = {135--156},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large deviations of branching process in a random environment. II
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 135
EP  - 156
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/
LA  - ru
ID  - DM_2020_32_1_a9
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large deviations of branching process in a random environment. II
%J Diskretnaya Matematika
%D 2020
%P 135-156
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/
%G ru
%F DM_2020_32_1_a9
A. V. Shklyaev. Large deviations of branching process in a random environment. II. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 135-156. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/