Large deviations of branching process in a random environment. II
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 135-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the probabilities of large deviations for the branching process $ Z_n $ in a random environment, which is formed by independent identically distributed variables. It is assumed that the associated random walk $ S_n = \xi_1 + \ldots + \xi_n $ has a finite mean $ \mu $ and satisfies the Cramér condition $ E e^{h \xi_i} \infty $, $ 0 $. Under additional moment constraints on $ Z_1 $, the exact asymptotic of the probabilities $ {\mathbf P} (\ln Z_n \in [x, x + \Delta_n)) $ is found for the values $ x/n $ varying in the range depending on the type of process, and for all sequences $ \Delta_n $ that tend to zero sufficiently slowly as $ n \to \infty $. A similar theorem is proved for a random process in a random environment with immigration.
Keywords: branching processes in random environment, large deviation probabilities, branching processes with immigration.
@article{DM_2020_32_1_a9,
     author = {A. V. Shklyaev},
     title = {Large deviations of branching process in a random environment. {II}},
     journal = {Diskretnaya Matematika},
     pages = {135--156},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large deviations of branching process in a random environment. II
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 135
EP  - 156
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/
LA  - ru
ID  - DM_2020_32_1_a9
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large deviations of branching process in a random environment. II
%J Diskretnaya Matematika
%D 2020
%P 135-156
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/
%G ru
%F DM_2020_32_1_a9
A. V. Shklyaev. Large deviations of branching process in a random environment. II. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 135-156. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a9/

[1] Shklyaev A.V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. I”, Diskretnaya matematika, 31:4 (2019), 102–115 | DOI | MR

[2] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40:3 (1969), 814–827 | DOI | MR | Zbl

[3] Athreya K.B., Karlin S., “On branching processes with random environments: I: extinction probabilities”, Ann. Math. Stat., 42 (1971), 1499–1520 | DOI | MR | Zbl

[4] Kozlov M.V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 21:4 (1976), 813–825 ; Kozlov M. V., “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory of Probability and Its Applications, 21:4 (1977), 791–804 | MR | Zbl | DOI

[5] Birkner M., Geiger J., Kersting G., “Branching processes in random environment – a view on critical and subcritical cases”, Interacting stochastic systems, 2005, 269-291 | DOI | MR

[6] Afanasyev V.I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645-673 | DOI | MR | Zbl

[7] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic processes and their applications, 115:10 (2005), 1658-1676 | DOI | MR | Zbl

[8] Kozlov M.V., “O bolshikh ukloneniyakh vetvyaschikhsya protsessov v sluchainoi srede: geometricheskoe raspredelenie chisla potomkov”, Diskretnaya matematika, 18:2 (2006), 29-47 | DOI | Zbl

[9] Kozlov M.V., “O bolshikh ukloneniyakh strogo dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede s geometricheskim raspredeleniem chisla potomkov”, Teoriya veroyatnostei i ee primeneniya, 54:3 (2009), 439-465 ; Kozlov M.V., “On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny”, Theory Probab. Appl., 54:3 (2010), 424–446 | DOI | Zbl | DOI | MR

[10] Bansaye, V. and Berestycki, J., “Large deviations for branching processes in random environment”, 2008, arXiv: 0810.4991 | MR | Zbl

[11] Huang C., Liu Q., “Moments, moderate and large deviations for a branching process in a random environment”, Stochastic Proc. Appl., 122:2 (2012), 522-545 | DOI | MR | Zbl

[12] Boinghoff C., Kersting G., “Upper large deviations of branching processes in a random environment–Offspring distributions with geometrically bounded tails”, Stochastic Proc. Appl., 120:10 (2010), 2064–2077 | DOI | MR | Zbl

[13] Bansaye V., Boinghoff Ch., “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282:1 (2013), 15–34 | DOI | MR | Zbl

[14] Wang H., Gao Z., Liu Q., “Central limit theorems for a supercritical branching process in a random environment”, Statist. Probab. Lett., 81:5 (2011), 539-547 | DOI | MR | Zbl

[15] Dmitruschenkov D. V., “O bolshikh ukloneniyakh vetvyaschegosya protsessa v sluchainoi srede s immigratsiei v momenty vyrozhdeniya”, Diskretnaya matematika, 26:4 (2014), 36-42 ; Dmitruschenkov D. V., “On large deviations of a branching process in random environments with immigration at moments of extinction”, Discrete Math. Appl., 25:6 (2015), 339–343 | DOI | DOI | MR | Zbl

[16] Dmitruschenkov D.V., Shklyaev A.V., “Bolshie ukloneniya vetvyaschikhsya protsessov s immigratsiei v sluchainoi srede”, Diskretnaya matematika, 28:3 (2016), 28–48 ; Dmitruschenkov D. V., Shklyaev A. V., “Large deviations of branching processes with immigration in random environment”, Discrete Math. Appl., 27:6 (2017), 361–376 | DOI | DOI | MR | Zbl

[17] Buraczewski D., Dyszewski P., “Precise large deviation estimates for branching process in random environment”, 2017, arXiv: 1706.03874 | MR

[18] Shklyaev A. V., “On large deviations of branching processes in a random environment with arbitrary initial number of particles: critical and supercritical cases”, Discrete Math. Appl., 22:5-6 (2012) | DOI | DOI | MR | Zbl

[19] Topchii V.A., Vatutin V.A., “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 42:1 (1997), 21-34 ; Topchii V. A., Vatutin, V. A., “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Theory Probab.Appl., 42:1 (1998), 17–27 | DOI | MR | DOI

[20] Dharmadhikari S.W., Fabian V., Jogdeo K., “Bounds on the moments of martingales”, Ann. Math. Stat., 39:5 (1968), 1719-1723 | DOI | MR | Zbl

[21] Tanny D., “A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means”, Stochast. Proc. Appl., 28:1 (1988), 123–139 | DOI | MR | Zbl

[22] Guivarch Y., Liu Q., “Proprietes asymptotiques des processus de branchement en environnement aleatoire”, C. R. Acad. Sci., Ser. I. Math., 332:4 (2001), 339–344 | MR | Zbl