On the complexity of monotone circuits for threshold symmetric Boolean functions
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 81-109
Voir la notice de l'article provenant de la source Math-Net.Ru
The complexity of implementation of a threshold symmetric $n$-place Boolean function with threshold $k = O(1)$ via circuits over the basis $\{\vee,\, \wedge\}$ is shown not to exceed $2 \log_2 k \cdot n + o(n)$. Moreover, the complexity of a threshold-2 function is proved to be $2n+\Theta(\sqrt n)$, and the complexity of a threshold-3 function is shown to be $3n+O(\log n) $, the corresponding lower bounds are put forward.
Keywords:
monotone circuits, complexity, symmetric Boolean functions, threshold functions.
@article{DM_2020_32_1_a6,
author = {I. S. Sergeev},
title = {On the complexity of monotone circuits for threshold symmetric {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {81--109},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a6/}
}
I. S. Sergeev. On the complexity of monotone circuits for threshold symmetric Boolean functions. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 81-109. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a6/