On the action of the implicative closure operator on the set of partial functions of the multivalued logic
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 60-73

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set $P_k^*$ of partial functions of the $k$-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any $k\geqslant 2$, the number of implicative closed classes in $P_k^*$ is finite. For any $k\geqslant 2$, in $P_k^*$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in $P_3^*$.
Keywords: implicative closure operator, partial functions of multivalued logic.
@article{DM_2020_32_1_a4,
     author = {S. S. Marchenkov},
     title = {On the action of the implicative closure operator on the set of partial functions of the multivalued logic},
     journal = {Diskretnaya Matematika},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the action of the implicative closure operator on the set of partial functions of the multivalued logic
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 60
EP  - 73
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/
LA  - ru
ID  - DM_2020_32_1_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the action of the implicative closure operator on the set of partial functions of the multivalued logic
%J Diskretnaya Matematika
%D 2020
%P 60-73
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/
%G ru
%F DM_2020_32_1_a4
S. S. Marchenkov. On the action of the implicative closure operator on the set of partial functions of the multivalued logic. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/