On the action of the implicative closure operator on the set of partial functions of the multivalued logic
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 60-73
Voir la notice de l'article provenant de la source Math-Net.Ru
On the set $P_k^*$ of partial functions of the $k$-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any $k\geqslant 2$, the number of implicative closed classes in $P_k^*$ is finite. For any $k\geqslant 2$, in $P_k^*$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in $P_3^*$.
Keywords:
implicative closure operator, partial functions of multivalued logic.
@article{DM_2020_32_1_a4,
author = {S. S. Marchenkov},
title = {On the action of the implicative closure operator on the set of partial functions of the multivalued logic},
journal = {Diskretnaya Matematika},
pages = {60--73},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/}
}
TY - JOUR AU - S. S. Marchenkov TI - On the action of the implicative closure operator on the set of partial functions of the multivalued logic JO - Diskretnaya Matematika PY - 2020 SP - 60 EP - 73 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/ LA - ru ID - DM_2020_32_1_a4 ER -
S. S. Marchenkov. On the action of the implicative closure operator on the set of partial functions of the multivalued logic. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/