On the action of the implicative closure operator on the set of partial functions of the multivalued logic
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set $P_k^*$ of partial functions of the $k$-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any $k\geqslant 2$, the number of implicative closed classes in $P_k^*$ is finite. For any $k\geqslant 2$, in $P_k^*$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in $P_3^*$.
Keywords: implicative closure operator, partial functions of multivalued logic.
@article{DM_2020_32_1_a4,
     author = {S. S. Marchenkov},
     title = {On the action of the implicative closure operator on the set of partial functions of the multivalued logic},
     journal = {Diskretnaya Matematika},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the action of the implicative closure operator on the set of partial functions of the multivalued logic
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 60
EP  - 73
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/
LA  - ru
ID  - DM_2020_32_1_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the action of the implicative closure operator on the set of partial functions of the multivalued logic
%J Diskretnaya Matematika
%D 2020
%P 60-73
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/
%G ru
%F DM_2020_32_1_a4
S. S. Marchenkov. On the action of the implicative closure operator on the set of partial functions of the multivalued logic. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 60-73. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a4/

[1] Alekseev V.B., Voronenko A. A., “On some closed classes in partial two-valued logic”, Discrete Math. Appl., 4:5 (1994) | DOI | MR | Zbl

[2] Kuznetsov A.V., “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, Nauka, M., 1979, 5–33

[3] Lo Chzhukai, “Maksimalnye zamknutye klassy v mnozhestve chastichnykh funktsii mnogoznachnoi logiki”, Kiberneticheskii sbornik, no. 25, Mir, M., 1988, 131–141

[4] Lo Chzhukai, “Teoriya polnoty dlya chastichnykh funktsii mnogoznachnoi logiki'”, Kiberneticheskii sbornik, no. 25, Mir, M., 1988, 142–161

[5] Marchenkov S.S., “On expressibility of functions of many-valued logic in some logical-functional languages”, Discrete Math. Appl., 9:6 (1999), 563–581 | DOI | DOI | MR | Zbl

[6] Marchenkov S.S., “Ekvatsionalno zamknutye klassy chastichnykh bulevykh funktsii”, Diskretn. analiz i issled. oper., 15:1 (2008), 82–97 | MR | Zbl

[7] Marchenkov S.S., “The closure operator with the equality predicate branching on the set of partial Boolean functions”, Discrete Math. Appl., 18:4 (2008), 381–389 | DOI | DOI | MR | Zbl

[8] Marchenkov S.S., “Operator E-zamykaniya na mnozhestve chastichnykh funktsii mnogoznachnoi logiki”, Matematicheskie voprosy kibernetiki, no. 18, Fizmatlit, M., 2013, 227–238

[9] Marchenkov S.S., “Positively closed classes of three-valued logic”, J. Appl. Industr. Math., 8:2 (2014), 256–266 | DOI | MR | Zbl

[10] Marchenkov S.S., “Extensions of the positive closure operator by using logical connectives”, J. Appl. Industr. Math., 12:4 (2018), 678–683 | DOI | DOI | MR | Zbl

[11] Marchenkov S.S., Popova A.A., “Positively closed classes of partial Boolean functions”, Moscow Univ. Comput. Math. Cyber., 32 (2008), 147–151 | DOI | MR | Zbl

[12] Romov B.A., “O maksimalnykh podalgebrakh algebry chastichnykh funktsii mnogoznachnoi logiki”, Kibernetika, 1 (1980), 28–36 | MR | Zbl

[13] Romov B.A., “Algebry chastichnykh funktsii i ikh invarianty”, Kibernetika, 2 (1981), 1–11 | Zbl

[14] Romov B.A., “O probleme polnoty v algebre chastichnykh funktsii konechnoznachnoi logiki”, Kibernetika, 1 (1990), 102–106 | MR | Zbl

[15] Freivald R.V., “Kriterii polnoty dlya chastichnykh funktsii algebry logiki i mnogoznachnykh logik”, DAN SSSR, 167:6 (1966), 1249–1250 | Zbl

[16] Freivald R.V., “Funktsionalnaya polnota dlya ne vsyudu opredelennykh funktsii algery logiki”, Diskretnyi analiz, 8 (1966), 55–68 | Zbl

[17] Fleischer I., Rosenberg I.G., “The Galois connection between partial functions and relations”, Pacific J. Math., 79:1 (1978), 93–98 | DOI | MR

[18] Haddad L., Rosenberg I., “Critére général de complétude pour les algébres partielles finies”, C. r. Acad. sci., 304:17 (1987), 507–509 | MR | Zbl

[19] Rosenberg I.G., “Galois theory for partial algebras”, Lecture Notes in Math., 1004 (1983), 257–272 | DOI | MR | Zbl