Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_1_a3, author = {F. M. Malyshev}, title = {Boolean analogues of {Pascal} triangle with the maximum possible number of ones}, journal = {Diskretnaya Matematika}, pages = {51--59}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a3/} }
F. M. Malyshev. Boolean analogues of Pascal triangle with the maximum possible number of ones. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a3/
[1] Malyshev F.M., “Bazisy mnozhestva tselykh chisel otnositelno mnogomestnykh operatsii sdviga”, Matematicheskie voprosy kriptografii, 2:1 (2011), 29–74 | DOI
[2] Malyshev F.M., “Bazisy rekurrentnykh posledovatelnostei”, Chebyshevskii sbornik, 16:2 (2015), 155–185 | MR | Zbl
[3] Wolfram S., “Cellular Automaton Supercomputing”, High-Speed Computing, University of Illinois Press, 1988, 40–48
[4] Малышев Ф.М., Кутырёва Е.В. “O raspredelenii chisla edinits v bulevom treugolnike Paskalya”, Diskretnaya matematika, 18:2 (2006), 123–131 | DOI | MR | Zbl
[5] Malyshev F.M., “Raspredelenie krainikh znachenii chisla edinits v bulevykh analogakh treugolnika Paskalya”, Diskretnaya matematika, 28:3 (2016), 59–96 ; Malyshev F.M., “Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle”, Discrete Math. Appl., 27:3 (2017), 149–176 | DOI | MR | DOI | Zbl